|
|
|
"""Model head modules."""
|
|
|
|
import copy
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.init import constant_, xavier_uniform_
|
|
|
|
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
|
|
|
|
from .block import DFL, BNContrastiveHead, ContrastiveHead, Proto
|
|
from .conv import Conv, DWConv
|
|
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
|
from .utils import bias_init_with_prob, linear_init
|
|
|
|
__all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10Detect"
|
|
|
|
|
|
class Detect(nn.Module):
|
|
"""YOLO Detect head for detection models."""
|
|
|
|
dynamic = False
|
|
export = False
|
|
end2end = False
|
|
max_det = 300
|
|
shape = None
|
|
anchors = torch.empty(0)
|
|
strides = torch.empty(0)
|
|
|
|
def __init__(self, nc=80, ch=()):
|
|
"""Initializes the YOLO detection layer with specified number of classes and channels."""
|
|
super().__init__()
|
|
self.nc = nc
|
|
self.nl = len(ch)
|
|
self.reg_max = 16
|
|
self.no = nc + self.reg_max * 4
|
|
self.stride = torch.zeros(self.nl)
|
|
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))
|
|
self.cv2 = nn.ModuleList(
|
|
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
|
|
)
|
|
self.cv3 = nn.ModuleList(
|
|
nn.Sequential(
|
|
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
|
|
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
|
|
nn.Conv2d(c3, self.nc, 1),
|
|
)
|
|
for x in ch
|
|
)
|
|
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
|
|
|
if self.end2end:
|
|
self.one2one_cv2 = copy.deepcopy(self.cv2)
|
|
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
|
|
|
def forward(self, x):
|
|
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
|
if self.end2end:
|
|
return self.forward_end2end(x)
|
|
|
|
for i in range(self.nl):
|
|
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
|
if self.training:
|
|
return x
|
|
y = self._inference(x)
|
|
return y if self.export else (y, x)
|
|
|
|
def forward_end2end(self, x):
|
|
"""
|
|
Performs forward pass of the v10Detect module.
|
|
|
|
Args:
|
|
x (tensor): Input tensor.
|
|
|
|
Returns:
|
|
(dict, tensor): If not in training mode, returns a dictionary containing the outputs of both one2many and one2one detections.
|
|
If in training mode, returns a dictionary containing the outputs of one2many and one2one detections separately.
|
|
"""
|
|
x_detach = [xi.detach() for xi in x]
|
|
one2one = [
|
|
torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl)
|
|
]
|
|
for i in range(self.nl):
|
|
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
|
if self.training:
|
|
return {"one2many": x, "one2one": one2one}
|
|
|
|
y = self._inference(one2one)
|
|
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
|
|
return y if self.export else (y, {"one2many": x, "one2one": one2one})
|
|
|
|
def _inference(self, x):
|
|
"""Decode predicted bounding boxes and class probabilities based on multiple-level feature maps."""
|
|
|
|
shape = x[0].shape
|
|
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
|
if self.dynamic or self.shape != shape:
|
|
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
self.shape = shape
|
|
|
|
if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:
|
|
box = x_cat[:, : self.reg_max * 4]
|
|
cls = x_cat[:, self.reg_max * 4 :]
|
|
else:
|
|
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
|
|
if self.export and self.format in {"tflite", "edgetpu"}:
|
|
|
|
|
|
grid_h = shape[2]
|
|
grid_w = shape[3]
|
|
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
|
norm = self.strides / (self.stride[0] * grid_size)
|
|
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
|
else:
|
|
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
|
|
|
return torch.cat((dbox, cls.sigmoid()), 1)
|
|
|
|
def bias_init(self):
|
|
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
|
m = self
|
|
|
|
|
|
for a, b, s in zip(m.cv2, m.cv3, m.stride):
|
|
a[-1].bias.data[:] = 1.0
|
|
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)
|
|
if self.end2end:
|
|
for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride):
|
|
a[-1].bias.data[:] = 1.0
|
|
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)
|
|
|
|
def decode_bboxes(self, bboxes, anchors):
|
|
"""Decode bounding boxes."""
|
|
return dist2bbox(bboxes, anchors, xywh=not self.end2end, dim=1)
|
|
|
|
@staticmethod
|
|
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80):
|
|
"""
|
|
Post-processes YOLO model predictions.
|
|
|
|
Args:
|
|
preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
|
|
format [x, y, w, h, class_probs].
|
|
max_det (int): Maximum detections per image.
|
|
nc (int, optional): Number of classes. Default: 80.
|
|
|
|
Returns:
|
|
(torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
|
|
dimension format [x, y, w, h, max_class_prob, class_index].
|
|
"""
|
|
batch_size, anchors, _ = preds.shape
|
|
boxes, scores = preds.split([4, nc], dim=-1)
|
|
index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1)
|
|
boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4))
|
|
scores = scores.gather(dim=1, index=index.repeat(1, 1, nc))
|
|
scores, index = scores.flatten(1).topk(min(max_det, anchors))
|
|
i = torch.arange(batch_size)[..., None]
|
|
return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1)
|
|
|
|
|
|
class Segment(Detect):
|
|
"""YOLO Segment head for segmentation models."""
|
|
|
|
def __init__(self, nc=80, nm=32, npr=256, ch=()):
|
|
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
|
|
super().__init__(nc, ch)
|
|
self.nm = nm
|
|
self.npr = npr
|
|
self.proto = Proto(ch[0], self.npr, self.nm)
|
|
|
|
c4 = max(ch[0] // 4, self.nm)
|
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
|
|
|
def forward(self, x):
|
|
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
|
p = self.proto(x[0])
|
|
bs = p.shape[0]
|
|
|
|
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)
|
|
x = Detect.forward(self, x)
|
|
if self.training:
|
|
return x, mc, p
|
|
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
|
|
|
|
|
class OBB(Detect):
|
|
"""YOLO OBB detection head for detection with rotation models."""
|
|
|
|
def __init__(self, nc=80, ne=1, ch=()):
|
|
"""Initialize OBB with number of classes `nc` and layer channels `ch`."""
|
|
super().__init__(nc, ch)
|
|
self.ne = ne
|
|
|
|
c4 = max(ch[0] // 4, self.ne)
|
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
|
|
|
|
def forward(self, x):
|
|
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
|
bs = x[0].shape[0]
|
|
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)
|
|
|
|
angle = (angle.sigmoid() - 0.25) * math.pi
|
|
|
|
if not self.training:
|
|
self.angle = angle
|
|
x = Detect.forward(self, x)
|
|
if self.training:
|
|
return x, angle
|
|
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
|
|
|
|
def decode_bboxes(self, bboxes, anchors):
|
|
"""Decode rotated bounding boxes."""
|
|
return dist2rbox(bboxes, self.angle, anchors, dim=1)
|
|
|
|
|
|
class Pose(Detect):
|
|
"""YOLO Pose head for keypoints models."""
|
|
|
|
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
|
|
"""Initialize YOLO network with default parameters and Convolutional Layers."""
|
|
super().__init__(nc, ch)
|
|
self.kpt_shape = kpt_shape
|
|
self.nk = kpt_shape[0] * kpt_shape[1]
|
|
|
|
c4 = max(ch[0] // 4, self.nk)
|
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
|
|
|
|
def forward(self, x):
|
|
"""Perform forward pass through YOLO model and return predictions."""
|
|
bs = x[0].shape[0]
|
|
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)
|
|
x = Detect.forward(self, x)
|
|
if self.training:
|
|
return x, kpt
|
|
pred_kpt = self.kpts_decode(bs, kpt)
|
|
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
|
|
|
|
def kpts_decode(self, bs, kpts):
|
|
"""Decodes keypoints."""
|
|
ndim = self.kpt_shape[1]
|
|
if self.export:
|
|
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
|
if ndim == 3:
|
|
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
|
return a.view(bs, self.nk, -1)
|
|
else:
|
|
y = kpts.clone()
|
|
if ndim == 3:
|
|
y[:, 2::3] = y[:, 2::3].sigmoid()
|
|
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
|
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
|
return y
|
|
|
|
|
|
class Classify(nn.Module):
|
|
"""YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
|
|
"""Initializes YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape."""
|
|
super().__init__()
|
|
c_ = 1280
|
|
self.conv = Conv(c1, c_, k, s, p, g)
|
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
|
self.drop = nn.Dropout(p=0.0, inplace=True)
|
|
self.linear = nn.Linear(c_, c2)
|
|
|
|
def forward(self, x):
|
|
"""Performs a forward pass of the YOLO model on input image data."""
|
|
if isinstance(x, list):
|
|
x = torch.cat(x, 1)
|
|
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
|
return x if self.training else x.softmax(1)
|
|
|
|
|
|
class WorldDetect(Detect):
|
|
"""Head for integrating YOLO detection models with semantic understanding from text embeddings."""
|
|
|
|
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
|
|
"""Initialize YOLO detection layer with nc classes and layer channels ch."""
|
|
super().__init__(nc, ch)
|
|
c3 = max(ch[0], min(self.nc, 100))
|
|
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
|
|
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
|
|
|
|
def forward(self, x, text):
|
|
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
|
for i in range(self.nl):
|
|
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
|
|
if self.training:
|
|
return x
|
|
|
|
|
|
shape = x[0].shape
|
|
x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
|
|
if self.dynamic or self.shape != shape:
|
|
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
self.shape = shape
|
|
|
|
if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:
|
|
box = x_cat[:, : self.reg_max * 4]
|
|
cls = x_cat[:, self.reg_max * 4 :]
|
|
else:
|
|
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
|
|
if self.export and self.format in {"tflite", "edgetpu"}:
|
|
|
|
|
|
grid_h = shape[2]
|
|
grid_w = shape[3]
|
|
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
|
norm = self.strides / (self.stride[0] * grid_size)
|
|
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
|
else:
|
|
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
|
|
|
y = torch.cat((dbox, cls.sigmoid()), 1)
|
|
return y if self.export else (y, x)
|
|
|
|
def bias_init(self):
|
|
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
|
m = self
|
|
|
|
|
|
for a, b, s in zip(m.cv2, m.cv3, m.stride):
|
|
a[-1].bias.data[:] = 1.0
|
|
|
|
|
|
|
|
class RTDETRDecoder(nn.Module):
|
|
"""
|
|
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
|
|
|
|
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
|
|
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
|
|
Transformer decoder layers to output the final predictions.
|
|
"""
|
|
|
|
export = False
|
|
|
|
def __init__(
|
|
self,
|
|
nc=80,
|
|
ch=(512, 1024, 2048),
|
|
hd=256,
|
|
nq=300,
|
|
ndp=4,
|
|
nh=8,
|
|
ndl=6,
|
|
d_ffn=1024,
|
|
dropout=0.0,
|
|
act=nn.ReLU(),
|
|
eval_idx=-1,
|
|
|
|
nd=100,
|
|
label_noise_ratio=0.5,
|
|
box_noise_scale=1.0,
|
|
learnt_init_query=False,
|
|
):
|
|
"""
|
|
Initializes the RTDETRDecoder module with the given parameters.
|
|
|
|
Args:
|
|
nc (int): Number of classes. Default is 80.
|
|
ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
|
|
hd (int): Dimension of hidden layers. Default is 256.
|
|
nq (int): Number of query points. Default is 300.
|
|
ndp (int): Number of decoder points. Default is 4.
|
|
nh (int): Number of heads in multi-head attention. Default is 8.
|
|
ndl (int): Number of decoder layers. Default is 6.
|
|
d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
|
|
dropout (float): Dropout rate. Default is 0.
|
|
act (nn.Module): Activation function. Default is nn.ReLU.
|
|
eval_idx (int): Evaluation index. Default is -1.
|
|
nd (int): Number of denoising. Default is 100.
|
|
label_noise_ratio (float): Label noise ratio. Default is 0.5.
|
|
box_noise_scale (float): Box noise scale. Default is 1.0.
|
|
learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
|
|
"""
|
|
super().__init__()
|
|
self.hidden_dim = hd
|
|
self.nhead = nh
|
|
self.nl = len(ch)
|
|
self.nc = nc
|
|
self.num_queries = nq
|
|
self.num_decoder_layers = ndl
|
|
|
|
|
|
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
|
|
|
|
|
|
|
|
|
|
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
|
|
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
|
|
|
|
|
|
self.denoising_class_embed = nn.Embedding(nc, hd)
|
|
self.num_denoising = nd
|
|
self.label_noise_ratio = label_noise_ratio
|
|
self.box_noise_scale = box_noise_scale
|
|
|
|
|
|
self.learnt_init_query = learnt_init_query
|
|
if learnt_init_query:
|
|
self.tgt_embed = nn.Embedding(nq, hd)
|
|
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
|
|
|
|
|
|
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
|
|
self.enc_score_head = nn.Linear(hd, nc)
|
|
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
|
|
|
|
|
|
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
|
|
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
|
|
|
|
self._reset_parameters()
|
|
|
|
def forward(self, x, batch=None):
|
|
"""Runs the forward pass of the module, returning bounding box and classification scores for the input."""
|
|
from ultralytics.models.utils.ops import get_cdn_group
|
|
|
|
|
|
feats, shapes = self._get_encoder_input(x)
|
|
|
|
|
|
dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
|
|
batch,
|
|
self.nc,
|
|
self.num_queries,
|
|
self.denoising_class_embed.weight,
|
|
self.num_denoising,
|
|
self.label_noise_ratio,
|
|
self.box_noise_scale,
|
|
self.training,
|
|
)
|
|
|
|
embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
|
|
|
|
|
dec_bboxes, dec_scores = self.decoder(
|
|
embed,
|
|
refer_bbox,
|
|
feats,
|
|
shapes,
|
|
self.dec_bbox_head,
|
|
self.dec_score_head,
|
|
self.query_pos_head,
|
|
attn_mask=attn_mask,
|
|
)
|
|
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
|
|
if self.training:
|
|
return x
|
|
|
|
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
|
return y if self.export else (y, x)
|
|
|
|
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2):
|
|
"""Generates anchor bounding boxes for given shapes with specific grid size and validates them."""
|
|
anchors = []
|
|
for i, (h, w) in enumerate(shapes):
|
|
sy = torch.arange(end=h, dtype=dtype, device=device)
|
|
sx = torch.arange(end=w, dtype=dtype, device=device)
|
|
grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
|
|
grid_xy = torch.stack([grid_x, grid_y], -1)
|
|
|
|
valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
|
|
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
|
|
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
|
|
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4))
|
|
|
|
anchors = torch.cat(anchors, 1)
|
|
valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True)
|
|
anchors = torch.log(anchors / (1 - anchors))
|
|
anchors = anchors.masked_fill(~valid_mask, float("inf"))
|
|
return anchors, valid_mask
|
|
|
|
def _get_encoder_input(self, x):
|
|
"""Processes and returns encoder inputs by getting projection features from input and concatenating them."""
|
|
|
|
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
|
|
|
feats = []
|
|
shapes = []
|
|
for feat in x:
|
|
h, w = feat.shape[2:]
|
|
|
|
feats.append(feat.flatten(2).permute(0, 2, 1))
|
|
|
|
shapes.append([h, w])
|
|
|
|
|
|
feats = torch.cat(feats, 1)
|
|
return feats, shapes
|
|
|
|
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
|
|
"""Generates and prepares the input required for the decoder from the provided features and shapes."""
|
|
bs = feats.shape[0]
|
|
|
|
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
|
|
features = self.enc_output(valid_mask * feats)
|
|
|
|
enc_outputs_scores = self.enc_score_head(features)
|
|
|
|
|
|
|
|
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
|
|
|
|
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
|
|
|
|
|
|
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
|
|
|
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
|
|
|
|
|
|
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
|
|
|
|
enc_bboxes = refer_bbox.sigmoid()
|
|
if dn_bbox is not None:
|
|
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
|
|
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
|
|
|
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
|
|
if self.training:
|
|
refer_bbox = refer_bbox.detach()
|
|
if not self.learnt_init_query:
|
|
embeddings = embeddings.detach()
|
|
if dn_embed is not None:
|
|
embeddings = torch.cat([dn_embed, embeddings], 1)
|
|
|
|
return embeddings, refer_bbox, enc_bboxes, enc_scores
|
|
|
|
|
|
def _reset_parameters(self):
|
|
"""Initializes or resets the parameters of the model's various components with predefined weights and biases."""
|
|
|
|
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
|
|
|
|
|
constant_(self.enc_score_head.bias, bias_cls)
|
|
constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
|
|
constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
|
|
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
|
|
|
constant_(cls_.bias, bias_cls)
|
|
constant_(reg_.layers[-1].weight, 0.0)
|
|
constant_(reg_.layers[-1].bias, 0.0)
|
|
|
|
linear_init(self.enc_output[0])
|
|
xavier_uniform_(self.enc_output[0].weight)
|
|
if self.learnt_init_query:
|
|
xavier_uniform_(self.tgt_embed.weight)
|
|
xavier_uniform_(self.query_pos_head.layers[0].weight)
|
|
xavier_uniform_(self.query_pos_head.layers[1].weight)
|
|
for layer in self.input_proj:
|
|
xavier_uniform_(layer[0].weight)
|
|
|
|
|
|
class v10Detect(Detect):
|
|
"""
|
|
v10 Detection head from https://arxiv.org/pdf/2405.14458.
|
|
|
|
Args:
|
|
nc (int): Number of classes.
|
|
ch (tuple): Tuple of channel sizes.
|
|
|
|
Attributes:
|
|
max_det (int): Maximum number of detections.
|
|
|
|
Methods:
|
|
__init__(self, nc=80, ch=()): Initializes the v10Detect object.
|
|
forward(self, x): Performs forward pass of the v10Detect module.
|
|
bias_init(self): Initializes biases of the Detect module.
|
|
|
|
"""
|
|
|
|
end2end = True
|
|
|
|
def __init__(self, nc=80, ch=()):
|
|
"""Initializes the v10Detect object with the specified number of classes and input channels."""
|
|
super().__init__(nc, ch)
|
|
c3 = max(ch[0], min(self.nc, 100))
|
|
|
|
self.cv3 = nn.ModuleList(
|
|
nn.Sequential(
|
|
nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)),
|
|
nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)),
|
|
nn.Conv2d(c3, self.nc, 1),
|
|
)
|
|
for x in ch
|
|
)
|
|
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
|
|