|
|
|
|
|
import torch
|
|
|
|
from ultralytics.engine.predictor import BasePredictor
|
|
from ultralytics.engine.results import Results
|
|
from ultralytics.utils import ops
|
|
|
|
|
|
class NASPredictor(BasePredictor):
|
|
"""
|
|
Ultralytics YOLO NAS Predictor for object detection.
|
|
|
|
This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the
|
|
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
|
|
scaling the bounding boxes to fit the original image dimensions.
|
|
|
|
Attributes:
|
|
args (Namespace): Namespace containing various configurations for post-processing.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics import NAS
|
|
|
|
model = NAS("yolo_nas_s")
|
|
predictor = model.predictor
|
|
# Assumes that raw_preds, img, orig_imgs are available
|
|
results = predictor.postprocess(raw_preds, img, orig_imgs)
|
|
```
|
|
|
|
Note:
|
|
Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
|
|
"""
|
|
|
|
def postprocess(self, preds_in, img, orig_imgs):
|
|
"""Postprocess predictions and returns a list of Results objects."""
|
|
|
|
boxes = ops.xyxy2xywh(preds_in[0][0])
|
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
|
|
|
preds = ops.non_max_suppression(
|
|
preds,
|
|
self.args.conf,
|
|
self.args.iou,
|
|
agnostic=self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
classes=self.args.classes,
|
|
)
|
|
|
|
if not isinstance(orig_imgs, list):
|
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
|
|
results = []
|
|
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
|
return results
|
|
|