File size: 33,722 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import math
import re
import time

import cv2
import numpy as np
import torch
import torch.nn.functional as F

from ultralytics.utils import LOGGER
from ultralytics.utils.metrics import batch_probiou


class Profile(contextlib.ContextDecorator):
    """

    YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'.



    Example:

        ```python

        from ultralytics.utils.ops import Profile



        with Profile(device=device) as dt:

            pass  # slow operation here



        print(dt)  # prints "Elapsed time is 9.5367431640625e-07 s"

        ```

    """

    def __init__(self, t=0.0, device: torch.device = None):
        """

        Initialize the Profile class.



        Args:

            t (float): Initial time. Defaults to 0.0.

            device (torch.device): Devices used for model inference. Defaults to None (cpu).

        """
        self.t = t
        self.device = device
        self.cuda = bool(device and str(device).startswith("cuda"))

    def __enter__(self):
        """Start timing."""
        self.start = self.time()
        return self

    def __exit__(self, type, value, traceback):  # noqa
        """Stop timing."""
        self.dt = self.time() - self.start  # delta-time
        self.t += self.dt  # accumulate dt

    def __str__(self):
        """Returns a human-readable string representing the accumulated elapsed time in the profiler."""
        return f"Elapsed time is {self.t} s"

    def time(self):
        """Get current time."""
        if self.cuda:
            torch.cuda.synchronize(self.device)
        return time.time()


def segment2box(segment, width=640, height=640):
    """

    Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy).



    Args:

        segment (torch.Tensor): the segment label

        width (int): the width of the image. Defaults to 640

        height (int): The height of the image. Defaults to 640



    Returns:

        (np.ndarray): the minimum and maximum x and y values of the segment.

    """
    x, y = segment.T  # segment xy
    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
    x = x[inside]
    y = y[inside]
    return (
        np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype)
        if any(x)
        else np.zeros(4, dtype=segment.dtype)
    )  # xyxy


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True, xywh=False):
    """

    Rescales bounding boxes (in the format of xyxy by default) from the shape of the image they were originally

    specified in (img1_shape) to the shape of a different image (img0_shape).



    Args:

        img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).

        boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)

        img0_shape (tuple): the shape of the target image, in the format of (height, width).

        ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be

            calculated based on the size difference between the two images.

        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular

            rescaling.

        xywh (bool): The box format is xywh or not, default=False.



    Returns:

        boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)

    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (
            round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1),
            round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1),
        )  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    if padding:
        boxes[..., 0] -= pad[0]  # x padding
        boxes[..., 1] -= pad[1]  # y padding
        if not xywh:
            boxes[..., 2] -= pad[0]  # x padding
            boxes[..., 3] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    return clip_boxes(boxes, img0_shape)


def make_divisible(x, divisor):
    """

    Returns the nearest number that is divisible by the given divisor.



    Args:

        x (int): The number to make divisible.

        divisor (int | torch.Tensor): The divisor.



    Returns:

        (int): The nearest number divisible by the divisor.

    """
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


def nms_rotated(boxes, scores, threshold=0.45):
    """

    NMS for oriented bounding boxes using probiou and fast-nms.



    Args:

        boxes (torch.Tensor): Rotated bounding boxes, shape (N, 5), format xywhr.

        scores (torch.Tensor): Confidence scores, shape (N,).

        threshold (float, optional): IoU threshold. Defaults to 0.45.



    Returns:

        (torch.Tensor): Indices of boxes to keep after NMS.

    """
    if len(boxes) == 0:
        return np.empty((0,), dtype=np.int8)
    sorted_idx = torch.argsort(scores, descending=True)
    boxes = boxes[sorted_idx]
    ious = batch_probiou(boxes, boxes).triu_(diagonal=1)
    pick = torch.nonzero(ious.max(dim=0)[0] < threshold).squeeze_(-1)
    return sorted_idx[pick]


def non_max_suppression(

    prediction,

    conf_thres=0.25,

    iou_thres=0.45,

    classes=None,

    agnostic=False,

    multi_label=False,

    labels=(),

    max_det=300,

    nc=0,  # number of classes (optional)

    max_time_img=0.05,

    max_nms=30000,

    max_wh=7680,

    in_place=True,

    rotated=False,

):
    """

    Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.



    Args:

        prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)

            containing the predicted boxes, classes, and masks. The tensor should be in the format

            output by a model, such as YOLO.

        conf_thres (float): The confidence threshold below which boxes will be filtered out.

            Valid values are between 0.0 and 1.0.

        iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.

            Valid values are between 0.0 and 1.0.

        classes (List[int]): A list of class indices to consider. If None, all classes will be considered.

        agnostic (bool): If True, the model is agnostic to the number of classes, and all

            classes will be considered as one.

        multi_label (bool): If True, each box may have multiple labels.

        labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner

            list contains the apriori labels for a given image. The list should be in the format

            output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).

        max_det (int): The maximum number of boxes to keep after NMS.

        nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.

        max_time_img (float): The maximum time (seconds) for processing one image.

        max_nms (int): The maximum number of boxes into torchvision.ops.nms().

        max_wh (int): The maximum box width and height in pixels.

        in_place (bool): If True, the input prediction tensor will be modified in place.

        rotated (bool): If Oriented Bounding Boxes (OBB) are being passed for NMS.



    Returns:

        (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of

            shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns

            (x1, y1, x2, y2, confidence, class, mask1, mask2, ...).

    """
    import torchvision  # scope for faster 'import ultralytics'

    # Checks
    assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
    assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
    if isinstance(prediction, (list, tuple)):  # YOLOv8 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output
    if classes is not None:
        classes = torch.tensor(classes, device=prediction.device)

    if prediction.shape[-1] == 6:  # end-to-end model (BNC, i.e. 1,300,6)
        output = [pred[pred[:, 4] > conf_thres][:max_det] for pred in prediction]
        if classes is not None:
            output = [pred[(pred[:, 5:6] == classes).any(1)] for pred in output]
        return output

    bs = prediction.shape[0]  # batch size (BCN, i.e. 1,84,6300)
    nc = nc or (prediction.shape[1] - 4)  # number of classes
    nm = prediction.shape[1] - nc - 4  # number of masks
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    time_limit = 2.0 + max_time_img * bs  # seconds to quit after
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)

    prediction = prediction.transpose(-1, -2)  # shape(1,84,6300) to shape(1,6300,84)
    if not rotated:
        if in_place:
            prediction[..., :4] = xywh2xyxy(prediction[..., :4])  # xywh to xyxy
        else:
            prediction = torch.cat((xywh2xyxy(prediction[..., :4]), prediction[..., 4:]), dim=-1)  # xywh to xyxy

    t = time.time()
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]) and not rotated:
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
            v[:, :4] = xywh2xyxy(lb[:, 1:5])  # box
            v[range(len(lb)), lb[:, 0].long() + 4] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = x.split((4, nc, nm), 1)

        if multi_label:
            i, j = torch.where(cls > conf_thres)
            x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = cls.max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == classes).any(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        if n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        scores = x[:, 4]  # scores
        if rotated:
            boxes = torch.cat((x[:, :2] + c, x[:, 2:4], x[:, -1:]), dim=-1)  # xywhr
            i = nms_rotated(boxes, scores, iou_thres)
        else:
            boxes = x[:, :4] + c  # boxes (offset by class)
            i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        i = i[:max_det]  # limit detections

        # # Experimental
        # merge = False  # use merge-NMS
        # if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
        #     # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
        #     from .metrics import box_iou
        #     iou = box_iou(boxes[i], boxes) > iou_thres  # IoU matrix
        #     weights = iou * scores[None]  # box weights
        #     x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
        #     redundant = True  # require redundant detections
        #     if redundant:
        #         i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            LOGGER.warning(f"WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded")
            break  # time limit exceeded

    return output


def clip_boxes(boxes, shape):
    """

    Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape.



    Args:

        boxes (torch.Tensor): the bounding boxes to clip

        shape (tuple): the shape of the image



    Returns:

        (torch.Tensor | numpy.ndarray): Clipped boxes

    """
    if isinstance(boxes, torch.Tensor):  # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
        boxes[..., 0] = boxes[..., 0].clamp(0, shape[1])  # x1
        boxes[..., 1] = boxes[..., 1].clamp(0, shape[0])  # y1
        boxes[..., 2] = boxes[..., 2].clamp(0, shape[1])  # x2
        boxes[..., 3] = boxes[..., 3].clamp(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def clip_coords(coords, shape):
    """

    Clip line coordinates to the image boundaries.



    Args:

        coords (torch.Tensor | numpy.ndarray): A list of line coordinates.

        shape (tuple): A tuple of integers representing the size of the image in the format (height, width).



    Returns:

        (torch.Tensor | numpy.ndarray): Clipped coordinates

    """
    if isinstance(coords, torch.Tensor):  # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
        coords[..., 0] = coords[..., 0].clamp(0, shape[1])  # x
        coords[..., 1] = coords[..., 1].clamp(0, shape[0])  # y
    else:  # np.array (faster grouped)
        coords[..., 0] = coords[..., 0].clip(0, shape[1])  # x
        coords[..., 1] = coords[..., 1].clip(0, shape[0])  # y
    return coords


def scale_image(masks, im0_shape, ratio_pad=None):
    """

    Takes a mask, and resizes it to the original image size.



    Args:

        masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].

        im0_shape (tuple): the original image shape

        ratio_pad (tuple): the ratio of the padding to the original image.



    Returns:

        masks (np.ndarray): The masks that are being returned with shape [h, w, num].

    """
    # Rescale coordinates (xyxy) from im1_shape to im0_shape
    im1_shape = masks.shape
    if im1_shape[:2] == im0_shape[:2]:
        return masks
    if ratio_pad is None:  # calculate from im0_shape
        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
    else:
        # gain = ratio_pad[0][0]
        pad = ratio_pad[1]
    top, left = int(pad[1]), int(pad[0])  # y, x
    bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])

    if len(masks.shape) < 2:
        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
    masks = masks[top:bottom, left:right]
    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
    if len(masks.shape) == 2:
        masks = masks[:, :, None]

    return masks


def xyxy2xywh(x):
    """

    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the

    top-left corner and (x2, y2) is the bottom-right corner.



    Args:

        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.



    Returns:

        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.

    """
    assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x center
    y[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y center
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def xywh2xyxy(x):
    """

    Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the

    top-left corner and (x2, y2) is the bottom-right corner. Note: ops per 2 channels faster than per channel.



    Args:

        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.



    Returns:

        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.

    """
    assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    xy = x[..., :2]  # centers
    wh = x[..., 2:] / 2  # half width-height
    y[..., :2] = xy - wh  # top left xy
    y[..., 2:] = xy + wh  # bottom right xy
    return y


def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    """

    Convert normalized bounding box coordinates to pixel coordinates.



    Args:

        x (np.ndarray | torch.Tensor): The bounding box coordinates.

        w (int): Width of the image. Defaults to 640

        h (int): Height of the image. Defaults to 640

        padw (int): Padding width. Defaults to 0

        padh (int): Padding height. Defaults to 0

    Returns:

        y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where

            x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.

    """
    assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw  # top left x
    y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh  # top left y
    y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw  # bottom right x
    y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh  # bottom right y
    return y


def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
    """

    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. x, y,

    width and height are normalized to image dimensions.



    Args:

        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.

        w (int): The width of the image. Defaults to 640

        h (int): The height of the image. Defaults to 640

        clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False

        eps (float): The minimum value of the box's width and height. Defaults to 0.0



    Returns:

        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format

    """
    if clip:
        x = clip_boxes(x, (h - eps, w - eps))
    assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w  # x center
    y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h  # y center
    y[..., 2] = (x[..., 2] - x[..., 0]) / w  # width
    y[..., 3] = (x[..., 3] - x[..., 1]) / h  # height
    return y


def xywh2ltwh(x):
    """

    Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.



    Args:

        x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format



    Returns:

        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format

    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    return y


def xyxy2ltwh(x):
    """

    Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right.



    Args:

        x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format



    Returns:

        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.

    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def ltwh2xywh(x):
    """

    Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center.



    Args:

        x (torch.Tensor): the input tensor



    Returns:

        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format.

    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] + x[..., 2] / 2  # center x
    y[..., 1] = x[..., 1] + x[..., 3] / 2  # center y
    return y


def xyxyxyxy2xywhr(x):
    """

    Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation]. Rotation values are

    returned in radians from 0 to pi/2.



    Args:

        x (numpy.ndarray | torch.Tensor): Input box corners [xy1, xy2, xy3, xy4] of shape (n, 8).



    Returns:

        (numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).

    """
    is_torch = isinstance(x, torch.Tensor)
    points = x.cpu().numpy() if is_torch else x
    points = points.reshape(len(x), -1, 2)
    rboxes = []
    for pts in points:
        # NOTE: Use cv2.minAreaRect to get accurate xywhr,
        # especially some objects are cut off by augmentations in dataloader.
        (cx, cy), (w, h), angle = cv2.minAreaRect(pts)
        rboxes.append([cx, cy, w, h, angle / 180 * np.pi])
    return torch.tensor(rboxes, device=x.device, dtype=x.dtype) if is_torch else np.asarray(rboxes)


def xywhr2xyxyxyxy(x):
    """

    Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4]. Rotation values should

    be in radians from 0 to pi/2.



    Args:

        x (numpy.ndarray | torch.Tensor): Boxes in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).



    Returns:

        (numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 4, 2) or (b, n, 4, 2).

    """
    cos, sin, cat, stack = (
        (torch.cos, torch.sin, torch.cat, torch.stack)
        if isinstance(x, torch.Tensor)
        else (np.cos, np.sin, np.concatenate, np.stack)
    )

    ctr = x[..., :2]
    w, h, angle = (x[..., i : i + 1] for i in range(2, 5))
    cos_value, sin_value = cos(angle), sin(angle)
    vec1 = [w / 2 * cos_value, w / 2 * sin_value]
    vec2 = [-h / 2 * sin_value, h / 2 * cos_value]
    vec1 = cat(vec1, -1)
    vec2 = cat(vec2, -1)
    pt1 = ctr + vec1 + vec2
    pt2 = ctr + vec1 - vec2
    pt3 = ctr - vec1 - vec2
    pt4 = ctr - vec1 + vec2
    return stack([pt1, pt2, pt3, pt4], -2)


def ltwh2xyxy(x):
    """

    It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right.



    Args:

        x (np.ndarray | torch.Tensor): the input image



    Returns:

        y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.

    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 2] = x[..., 2] + x[..., 0]  # width
    y[..., 3] = x[..., 3] + x[..., 1]  # height
    return y


def segments2boxes(segments):
    """

    It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh).



    Args:

        segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates



    Returns:

        (np.ndarray): the xywh coordinates of the bounding boxes.

    """
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def resample_segments(segments, n=1000):
    """

    Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.



    Args:

        segments (list): a list of (n,2) arrays, where n is the number of points in the segment.

        n (int): number of points to resample the segment to. Defaults to 1000



    Returns:

        segments (list): the resampled segments.

    """
    for i, s in enumerate(segments):
        s = np.concatenate((s, s[0:1, :]), axis=0)
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = (
            np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)], dtype=np.float32).reshape(2, -1).T
        )  # segment xy
    return segments


def crop_mask(masks, boxes):
    """

    It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box.



    Args:

        masks (torch.Tensor): [n, h, w] tensor of masks

        boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form



    Returns:

        (torch.Tensor): The masks are being cropped to the bounding box.

    """
    _, h, w = masks.shape
    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(n,1,1)
    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,1,w)
    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(1,h,1)

    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))


def process_mask(protos, masks_in, bboxes, shape, upsample=False):
    """

    Apply masks to bounding boxes using the output of the mask head.



    Args:

        protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].

        masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.

        bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.

        shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).

        upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.



    Returns:

        (torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w

            are the height and width of the input image. The mask is applied to the bounding boxes.

    """
    c, mh, mw = protos.shape  # CHW
    ih, iw = shape
    masks = (masks_in @ protos.float().view(c, -1)).view(-1, mh, mw)  # CHW
    width_ratio = mw / iw
    height_ratio = mh / ih

    downsampled_bboxes = bboxes.clone()
    downsampled_bboxes[:, 0] *= width_ratio
    downsampled_bboxes[:, 2] *= width_ratio
    downsampled_bboxes[:, 3] *= height_ratio
    downsampled_bboxes[:, 1] *= height_ratio

    masks = crop_mask(masks, downsampled_bboxes)  # CHW
    if upsample:
        masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0]  # CHW
    return masks.gt_(0.0)


def process_mask_native(protos, masks_in, bboxes, shape):
    """

    It takes the output of the mask head, and crops it after upsampling to the bounding boxes.



    Args:

        protos (torch.Tensor): [mask_dim, mask_h, mask_w]

        masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms

        bboxes (torch.Tensor): [n, 4], n is number of masks after nms

        shape (tuple): the size of the input image (h,w)



    Returns:

        masks (torch.Tensor): The returned masks with dimensions [h, w, n]

    """
    c, mh, mw = protos.shape  # CHW
    masks = (masks_in @ protos.float().view(c, -1)).view(-1, mh, mw)
    masks = scale_masks(masks[None], shape)[0]  # CHW
    masks = crop_mask(masks, bboxes)  # CHW
    return masks.gt_(0.0)


def scale_masks(masks, shape, padding=True):
    """

    Rescale segment masks to shape.



    Args:

        masks (torch.Tensor): (N, C, H, W).

        shape (tuple): Height and width.

        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular

            rescaling.

    """
    mh, mw = masks.shape[2:]
    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
    pad = [mw - shape[1] * gain, mh - shape[0] * gain]  # wh padding
    if padding:
        pad[0] /= 2
        pad[1] /= 2
    top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0)  # y, x
    bottom, right = (int(mh - pad[1]), int(mw - pad[0]))
    masks = masks[..., top:bottom, left:right]

    masks = F.interpolate(masks, shape, mode="bilinear", align_corners=False)  # NCHW
    return masks


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
    """

    Rescale segment coordinates (xy) from img1_shape to img0_shape.



    Args:

        img1_shape (tuple): The shape of the image that the coords are from.

        coords (torch.Tensor): the coords to be scaled of shape n,2.

        img0_shape (tuple): the shape of the image that the segmentation is being applied to.

        ratio_pad (tuple): the ratio of the image size to the padded image size.

        normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False.

        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular

            rescaling.



    Returns:

        coords (torch.Tensor): The scaled coordinates.

    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    if padding:
        coords[..., 0] -= pad[0]  # x padding
        coords[..., 1] -= pad[1]  # y padding
    coords[..., 0] /= gain
    coords[..., 1] /= gain
    coords = clip_coords(coords, img0_shape)
    if normalize:
        coords[..., 0] /= img0_shape[1]  # width
        coords[..., 1] /= img0_shape[0]  # height
    return coords


def regularize_rboxes(rboxes):
    """

    Regularize rotated boxes in range [0, pi/2].



    Args:

        rboxes (torch.Tensor): Input boxes of shape(N, 5) in xywhr format.



    Returns:

        (torch.Tensor): The regularized boxes.

    """
    x, y, w, h, t = rboxes.unbind(dim=-1)
    # Swap edge and angle if h >= w
    w_ = torch.where(w > h, w, h)
    h_ = torch.where(w > h, h, w)
    t = torch.where(w > h, t, t + math.pi / 2) % math.pi
    return torch.stack([x, y, w_, h_, t], dim=-1)  # regularized boxes


def masks2segments(masks, strategy="largest"):
    """

    It takes a list of masks(n,h,w) and returns a list of segments(n,xy).



    Args:

        masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)

        strategy (str): 'concat' or 'largest'. Defaults to largest



    Returns:

        segments (List): list of segment masks

    """
    segments = []
    for x in masks.int().cpu().numpy().astype("uint8"):
        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        if c:
            if strategy == "concat":  # concatenate all segments
                c = np.concatenate([x.reshape(-1, 2) for x in c])
            elif strategy == "largest":  # select largest segment
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
        else:
            c = np.zeros((0, 2))  # no segments found
        segments.append(c.astype("float32"))
    return segments


def convert_torch2numpy_batch(batch: torch.Tensor) -> np.ndarray:
    """

    Convert a batch of FP32 torch tensors (0.0-1.0) to a NumPy uint8 array (0-255), changing from BCHW to BHWC layout.



    Args:

        batch (torch.Tensor): Input tensor batch of shape (Batch, Channels, Height, Width) and dtype torch.float32.



    Returns:

        (np.ndarray): Output NumPy array batch of shape (Batch, Height, Width, Channels) and dtype uint8.

    """
    return (batch.permute(0, 2, 3, 1).contiguous() * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()


def clean_str(s):
    """

    Cleans a string by replacing special characters with '_' character.



    Args:

        s (str): a string needing special characters replaced



    Returns:

        (str): a string with special characters replaced by an underscore _

    """
    return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)