File size: 26,348 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Ultralytics YOLO 🚀, AGPL-3.0 license

from typing import List, Optional, Tuple, Type

import torch
from torch import nn

from ultralytics.nn.modules import MLP, LayerNorm2d


class MaskDecoder(nn.Module):
    """

    Decoder module for generating masks and their associated quality scores using a transformer architecture.



    This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and

    generate mask predictions along with their quality scores.



    Attributes:

        transformer_dim (int): Channel dimension for the transformer module.

        transformer (nn.Module): Transformer module used for mask prediction.

        num_multimask_outputs (int): Number of masks to predict for disambiguating masks.

        iou_token (nn.Embedding): Embedding for the IoU token.

        num_mask_tokens (int): Number of mask tokens.

        mask_tokens (nn.Embedding): Embedding for the mask tokens.

        output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.

        output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.

        iou_prediction_head (nn.Module): MLP for predicting mask quality.



    Methods:

        forward: Predicts masks given image and prompt embeddings.

        predict_masks: Internal method for mask prediction.



    Examples:

        >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)

        >>> masks, iou_pred = decoder(

        ...     image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True

        ... )

        >>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")

    """

    def __init__(

        self,

        transformer_dim: int,

        transformer: nn.Module,

        num_multimask_outputs: int = 3,

        activation: Type[nn.Module] = nn.GELU,

        iou_head_depth: int = 3,

        iou_head_hidden_dim: int = 256,

    ) -> None:
        """

        Initializes the MaskDecoder module for generating masks and their quality scores.



        Args:

            transformer_dim (int): Channel dimension for the transformer module.

            transformer (nn.Module): Transformer module used for mask prediction.

            num_multimask_outputs (int): Number of masks to predict for disambiguating masks.

            activation (Type[nn.Module]): Type of activation to use when upscaling masks.

            iou_head_depth (int): Depth of the MLP used to predict mask quality.

            iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.



        Examples:

            >>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)

            >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer)

            >>> print(decoder)

        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
            activation(),
        )
        self.output_hypernetworks_mlps = nn.ModuleList(
            [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
        )

        self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)

    def forward(

        self,

        image_embeddings: torch.Tensor,

        image_pe: torch.Tensor,

        sparse_prompt_embeddings: torch.Tensor,

        dense_prompt_embeddings: torch.Tensor,

        multimask_output: bool,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Predicts masks given image and prompt embeddings.



        Args:

            image_embeddings (torch.Tensor): Embeddings from the image encoder.

            image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.

            sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.

            dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.

            multimask_output (bool): Whether to return multiple masks or a single mask.



        Returns:

            (Tuple[torch.Tensor, torch.Tensor]): A tuple containing:

                - masks (torch.Tensor): Batched predicted masks.

                - iou_pred (torch.Tensor): Batched predictions of mask quality.



        Examples:

            >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)

            >>> image_emb = torch.rand(1, 256, 64, 64)

            >>> image_pe = torch.rand(1, 256, 64, 64)

            >>> sparse_emb = torch.rand(1, 2, 256)

            >>> dense_emb = torch.rand(1, 256, 64, 64)

            >>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True)

            >>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")

        """
        masks, iou_pred = self.predict_masks(
            image_embeddings=image_embeddings,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
        )

        # Select the correct mask or masks for output
        mask_slice = slice(1, None) if multimask_output else slice(0, 1)
        masks = masks[:, mask_slice, :, :]
        iou_pred = iou_pred[:, mask_slice]

        # Prepare output
        return masks, iou_pred

    def predict_masks(

        self,

        image_embeddings: torch.Tensor,

        image_pe: torch.Tensor,

        sparse_prompt_embeddings: torch.Tensor,

        dense_prompt_embeddings: torch.Tensor,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks and quality scores using image and prompt embeddings via transformer architecture."""
        # Concatenate output tokens
        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # Expand per-image data in batch direction to be per-mask
        src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        src = src + dense_prompt_embeddings
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, 0, :]
        mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)
        upscaled_embedding = self.output_upscaling(src)
        hyper_in_list: List[torch.Tensor] = [
            self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
        ]
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)

        return masks, iou_pred


class SAM2MaskDecoder(nn.Module):
    """

    Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings.



    This class extends the functionality of the MaskDecoder, incorporating additional features such as

    high-resolution feature processing, dynamic multimask output, and object score prediction.



    Attributes:

        transformer_dim (int): Channel dimension of the transformer.

        transformer (nn.Module): Transformer used to predict masks.

        num_multimask_outputs (int): Number of masks to predict when disambiguating masks.

        iou_token (nn.Embedding): Embedding for IOU token.

        num_mask_tokens (int): Total number of mask tokens.

        mask_tokens (nn.Embedding): Embedding for mask tokens.

        pred_obj_scores (bool): Whether to predict object scores.

        obj_score_token (nn.Embedding): Embedding for object score token.

        use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.

        output_upscaling (nn.Sequential): Upscaling layers for output.

        use_high_res_features (bool): Whether to use high-resolution features.

        conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).

        conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).

        output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.

        iou_prediction_head (MLP): MLP for IOU prediction.

        pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.

        dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.

        dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.

        dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.



    Methods:

        forward: Predicts masks given image and prompt embeddings.

        predict_masks: Predicts instance segmentation masks from image and prompt embeddings.

        _get_stability_scores: Computes mask stability scores based on IoU between thresholds.

        _dynamic_multimask_via_stability: Dynamically selects the most stable mask output.



    Examples:

        >>> image_embeddings = torch.rand(1, 256, 64, 64)

        >>> image_pe = torch.rand(1, 256, 64, 64)

        >>> sparse_prompt_embeddings = torch.rand(1, 2, 256)

        >>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)

        >>> decoder = SAM2MaskDecoder(256, transformer)

        >>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(

        ...     image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False

        ... )

    """

    def __init__(

        self,

        transformer_dim: int,

        transformer: nn.Module,

        num_multimask_outputs: int = 3,

        activation: Type[nn.Module] = nn.GELU,

        iou_head_depth: int = 3,

        iou_head_hidden_dim: int = 256,

        use_high_res_features: bool = False,

        iou_prediction_use_sigmoid=False,

        dynamic_multimask_via_stability=False,

        dynamic_multimask_stability_delta=0.05,

        dynamic_multimask_stability_thresh=0.98,

        pred_obj_scores: bool = False,

        pred_obj_scores_mlp: bool = False,

        use_multimask_token_for_obj_ptr: bool = False,

    ) -> None:
        """

        Initializes the SAM2MaskDecoder module for predicting instance segmentation masks.



        This decoder extends the functionality of MaskDecoder, incorporating additional features such as

        high-resolution feature processing, dynamic multimask output, and object score prediction.



        Args:

            transformer_dim (int): Channel dimension of the transformer.

            transformer (nn.Module): Transformer used to predict masks.

            num_multimask_outputs (int): Number of masks to predict when disambiguating masks.

            activation (Type[nn.Module]): Type of activation to use when upscaling masks.

            iou_head_depth (int): Depth of the MLP used to predict mask quality.

            iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.

            use_high_res_features (bool): Whether to use high-resolution features.

            iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.

            dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.

            dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.

            dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.

            pred_obj_scores (bool): Whether to predict object scores.

            pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.

            use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.



        Examples:

            >>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)

            >>> decoder = SAM2MaskDecoder(transformer_dim=256, transformer=transformer)

            >>> print(decoder)

        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        self.pred_obj_scores = pred_obj_scores
        if self.pred_obj_scores:
            self.obj_score_token = nn.Embedding(1, transformer_dim)
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr

        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
            activation(),
        )
        self.use_high_res_features = use_high_res_features
        if use_high_res_features:
            self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
            self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)

        self.output_hypernetworks_mlps = nn.ModuleList(
            [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
        )

        self.iou_prediction_head = MLP(
            transformer_dim,
            iou_head_hidden_dim,
            self.num_mask_tokens,
            iou_head_depth,
            sigmoid=iou_prediction_use_sigmoid,
        )
        if self.pred_obj_scores:
            self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
            if pred_obj_scores_mlp:
                self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)

        # When outputting a single mask, optionally we can dynamically fall back to the best
        # multimask output token if the single mask output token gives low stability scores.
        self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
        self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
        self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh

    def forward(

        self,

        image_embeddings: torch.Tensor,

        image_pe: torch.Tensor,

        sparse_prompt_embeddings: torch.Tensor,

        dense_prompt_embeddings: torch.Tensor,

        multimask_output: bool,

        repeat_image: bool,

        high_res_features: Optional[List[torch.Tensor]] = None,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Predicts masks given image and prompt embeddings.



        Args:

            image_embeddings (torch.Tensor): Embeddings from the image encoder with shape (B, C, H, W).

            image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings (B, C, H, W).

            sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes with shape (B, N, C).

            dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs with shape (B, C, H, W).

            multimask_output (bool): Whether to return multiple masks or a single mask.

            repeat_image (bool): Flag to repeat the image embeddings.

            high_res_features (List[torch.Tensor] | None): Optional high-resolution features.



        Returns:

            (Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): A tuple containing:

                - masks (torch.Tensor): Batched predicted masks with shape (B, N, H, W).

                - iou_pred (torch.Tensor): Batched predictions of mask quality with shape (B, N).

                - sam_tokens_out (torch.Tensor): Batched SAM token for mask output with shape (B, N, C).

                - object_score_logits (torch.Tensor): Batched object score logits with shape (B, 1).



        Examples:

            >>> image_embeddings = torch.rand(1, 256, 64, 64)

            >>> image_pe = torch.rand(1, 256, 64, 64)

            >>> sparse_prompt_embeddings = torch.rand(1, 2, 256)

            >>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)

            >>> decoder = SAM2MaskDecoder(256, transformer)

            >>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(

            ...     image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False

            ... )

        """
        masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
            image_embeddings=image_embeddings,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
            repeat_image=repeat_image,
            high_res_features=high_res_features,
        )

        # Select the correct mask or masks for output
        if multimask_output:
            masks = masks[:, 1:, :, :]
            iou_pred = iou_pred[:, 1:]
        elif self.dynamic_multimask_via_stability and not self.training:
            masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
        else:
            masks = masks[:, 0:1, :, :]
            iou_pred = iou_pred[:, 0:1]

        if multimask_output and self.use_multimask_token_for_obj_ptr:
            sam_tokens_out = mask_tokens_out[:, 1:]  # [b, 3, c] shape
        else:
            # Take the mask output token. Here we *always* use the token for single mask output.
            # At test time, even if we track after 1-click (and using multimask_output=True),
            # we still take the single mask token here. The rationale is that we always track
            # after multiple clicks during training, so the past tokens seen during training
            # are always the single mask token (and we'll let it be the object-memory token).
            sam_tokens_out = mask_tokens_out[:, 0:1]  # [b, 1, c] shape

        # Prepare output
        return masks, iou_pred, sam_tokens_out, object_score_logits

    def predict_masks(

        self,

        image_embeddings: torch.Tensor,

        image_pe: torch.Tensor,

        sparse_prompt_embeddings: torch.Tensor,

        dense_prompt_embeddings: torch.Tensor,

        repeat_image: bool,

        high_res_features: Optional[List[torch.Tensor]] = None,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts instance segmentation masks from image and prompt embeddings using a transformer."""
        # Concatenate output tokens
        s = 0
        if self.pred_obj_scores:
            output_tokens = torch.cat(
                [
                    self.obj_score_token.weight,
                    self.iou_token.weight,
                    self.mask_tokens.weight,
                ],
                dim=0,
            )
            s = 1
        else:
            output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # Expand per-image data in batch direction to be per-mask
        if repeat_image:
            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        else:
            assert image_embeddings.shape[0] == tokens.shape[0]
            src = image_embeddings
        src = src + dense_prompt_embeddings
        assert image_pe.size(0) == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, s, :]
        mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)
        if not self.use_high_res_features:
            upscaled_embedding = self.output_upscaling(src)
        else:
            dc1, ln1, act1, dc2, act2 = self.output_upscaling
            feat_s0, feat_s1 = high_res_features
            upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
            upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)

        hyper_in_list: List[torch.Tensor] = [
            self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
        ]
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)
        if self.pred_obj_scores:
            assert s == 1
            object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
        else:
            # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
            object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)

        return masks, iou_pred, mask_tokens_out, object_score_logits

    def _get_stability_scores(self, mask_logits):
        """Computes mask stability scores based on IoU between upper and lower thresholds."""
        mask_logits = mask_logits.flatten(-2)
        stability_delta = self.dynamic_multimask_stability_delta
        area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
        area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
        return torch.where(area_u > 0, area_i / area_u, 1.0)

    def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
        """

        Dynamically selects the most stable mask output based on stability scores and IoU predictions.



        This method is used when outputting a single mask. If the stability score from the current single-mask

        output (based on output token 0) falls below a threshold, it instead selects from multi-mask outputs

        (based on output tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask

        for both clicking and tracking scenarios.



        Args:

            all_mask_logits (torch.Tensor): Logits for all predicted masks, shape (B, N, H, W) where B is

                batch size, N is number of masks (typically 4), and H, W are mask dimensions.

            all_iou_scores (torch.Tensor): Predicted IoU scores for all masks, shape (B, N).



        Returns:

            (Tuple[torch.Tensor, torch.Tensor]):

                - mask_logits_out (torch.Tensor): Selected mask logits, shape (B, 1, H, W).

                - iou_scores_out (torch.Tensor): Selected IoU scores, shape (B, 1).



        Examples:

            >>> decoder = SAM2MaskDecoder(...)

            >>> all_mask_logits = torch.rand(2, 4, 256, 256)  # 2 images, 4 masks each

            >>> all_iou_scores = torch.rand(2, 4)

            >>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores)

            >>> print(mask_logits.shape, iou_scores.shape)

            torch.Size([2, 1, 256, 256]) torch.Size([2, 1])

        """
        # The best mask from multimask output tokens (1~3)
        multimask_logits = all_mask_logits[:, 1:, :, :]
        multimask_iou_scores = all_iou_scores[:, 1:]
        best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
        batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device)
        best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
        best_multimask_logits = best_multimask_logits.unsqueeze(1)
        best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
        best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)

        # The mask from singlemask output token 0 and its stability score
        singlemask_logits = all_mask_logits[:, 0:1, :, :]
        singlemask_iou_scores = all_iou_scores[:, 0:1]
        stability_scores = self._get_stability_scores(singlemask_logits)
        is_stable = stability_scores >= self.dynamic_multimask_stability_thresh

        # Dynamically fall back to best multimask output upon low stability scores.
        mask_logits_out = torch.where(
            is_stable[..., None, None].expand_as(singlemask_logits),
            singlemask_logits,
            best_multimask_logits,
        )
        iou_scores_out = torch.where(
            is_stable.expand_as(singlemask_iou_scores),
            singlemask_iou_scores,
            best_multimask_iou_scores,
        )
        return mask_logits_out, iou_scores_out