File size: 5,701 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch

from ultralytics.data import YOLODataset
from ultralytics.data.augment import Compose, Format, v8_transforms
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import colorstr, ops

__all__ = ("RTDETRValidator",)  # tuple or list


class RTDETRDataset(YOLODataset):
    """

    Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.



    This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for

    real-time detection and tracking tasks.

    """

    def __init__(self, *args, data=None, **kwargs):
        """Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
        super().__init__(*args, data=data, **kwargs)

    # NOTE: add stretch version load_image for RTDETR mosaic
    def load_image(self, i, rect_mode=False):
        """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
        return super().load_image(i=i, rect_mode=rect_mode)

    def build_transforms(self, hyp=None):
        """Temporary, only for evaluation."""
        if self.augment:
            hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
            hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
            transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
        else:
            # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
            transforms = Compose([])
        transforms.append(
            Format(
                bbox_format="xywh",
                normalize=True,
                return_mask=self.use_segments,
                return_keypoint=self.use_keypoints,
                batch_idx=True,
                mask_ratio=hyp.mask_ratio,
                mask_overlap=hyp.overlap_mask,
            )
        )
        return transforms


class RTDETRValidator(DetectionValidator):
    """

    RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for

    the RT-DETR (Real-Time DETR) object detection model.



    The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for

    post-processing, and updates evaluation metrics accordingly.



    Example:

        ```python

        from ultralytics.models.rtdetr import RTDETRValidator



        args = dict(model="rtdetr-l.pt", data="coco8.yaml")

        validator = RTDETRValidator(args=args)

        validator()

        ```



    Note:

        For further details on the attributes and methods, refer to the parent DetectionValidator class.

    """

    def build_dataset(self, img_path, mode="val", batch=None):
        """

        Build an RTDETR Dataset.



        Args:

            img_path (str): Path to the folder containing images.

            mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.

            batch (int, optional): Size of batches, this is for `rect`. Defaults to None.

        """
        return RTDETRDataset(
            img_path=img_path,
            imgsz=self.args.imgsz,
            batch_size=batch,
            augment=False,  # no augmentation
            hyp=self.args,
            rect=False,  # no rect
            cache=self.args.cache or None,
            prefix=colorstr(f"{mode}: "),
            data=self.data,
        )

    def postprocess(self, preds):
        """Apply Non-maximum suppression to prediction outputs."""
        if not isinstance(preds, (list, tuple)):  # list for PyTorch inference but list[0] Tensor for export inference
            preds = [preds, None]

        bs, _, nd = preds[0].shape
        bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
        bboxes *= self.args.imgsz
        outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
        for i, bbox in enumerate(bboxes):  # (300, 4)
            bbox = ops.xywh2xyxy(bbox)
            score, cls = scores[i].max(-1)  # (300, )
            # Do not need threshold for evaluation as only got 300 boxes here
            # idx = score > self.args.conf
            pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1)  # filter
            # Sort by confidence to correctly get internal metrics
            pred = pred[score.argsort(descending=True)]
            outputs[i] = pred  # [idx]

        return outputs

    def _prepare_batch(self, si, batch):
        """Prepares a batch for training or inference by applying transformations."""
        idx = batch["batch_idx"] == si
        cls = batch["cls"][idx].squeeze(-1)
        bbox = batch["bboxes"][idx]
        ori_shape = batch["ori_shape"][si]
        imgsz = batch["img"].shape[2:]
        ratio_pad = batch["ratio_pad"][si]
        if len(cls):
            bbox = ops.xywh2xyxy(bbox)  # target boxes
            bbox[..., [0, 2]] *= ori_shape[1]  # native-space pred
            bbox[..., [1, 3]] *= ori_shape[0]  # native-space pred
        return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}

    def _prepare_pred(self, pred, pbatch):
        """Prepares and returns a batch with transformed bounding boxes and class labels."""
        predn = pred.clone()
        predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz  # native-space pred
        predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz  # native-space pred
        return predn.float()