File size: 16,861 Bytes
f6228f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
---
comments: true
description: Learn to accurately identify and count objects in real-time using Ultralytics YOLO11 for applications like crowd analysis and surveillance.
keywords: object counting, YOLO11, Ultralytics, real-time object detection, AI, deep learning, object tracking, crowd analysis, surveillance, resource optimization
---
# Object Counting using Ultralytics YOLO11
## What is Object Counting?
Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLO11 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) capabilities.
<table>
<tr>
<td align="center">
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Counting using Ultralytics YOLO11
</td>
<td align="center">
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Fj9TStNBVoY"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Class-wise Object Counting using Ultralytics YOLO11
</td>
</tr>
</table>
## Advantages of Object Counting?
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management.
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains.
## Real World Applications
| Logistics | Aquaculture |
| :-----------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------: |
|  |  |
| Conveyor Belt Packets Counting Using Ultralytics YOLO11 | Fish Counting in Sea using Ultralytics YOLO11 |
!!! example "Object Counting using YOLO11 Example"
=== "Count in Region"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
show=True,
region=region_points,
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "OBB Object Counting"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# line or region points
line_points = [(20, 400), (1080, 400)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
show=True,
region=line_points,
model="yolo11n-obb.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "Count in Polygon"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
show=True,
region=region_points,
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "Count in Line"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
line_points = [(20, 400), (1080, 400)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
show=True,
region=line_points,
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "Specific Classes"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
show=True,
model="yolo11n.pt",
classes=[0, 1],
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
### Argument `ObjectCounter`
Here's a table with the `ObjectCounter` arguments:
| Name | Type | Default | Description |
| ------------ | ------ | -------------------------- | ---------------------------------------------------------------------- |
| `model` | `str` | `None` | Path to Ultralytics YOLO Model File |
| `region` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
| `line_width` | `int` | `2` | Line thickness for bounding boxes. |
| `show` | `bool` | `False` | Flag to control whether to display the video stream. |
| `show_in` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
| `show_out` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
### Arguments `model.track`
{% include "macros/track-args.md" %}
## FAQ
### How do I count objects in a video using Ultralytics YOLO11?
To count objects in a video using Ultralytics YOLO11, you can follow these steps:
1. Import the necessary libraries (`cv2`, `ultralytics`).
2. Define the counting region (e.g., a polygon, line, etc.).
3. Set up the video capture and initialize the object counter.
4. Process each frame to track objects and count them within the defined region.
Here's a simple example for counting in a region:
```python
import cv2
from ultralytics import solutions
def count_objects_in_region(video_path, output_video_path, model_path):
"""Count objects in a specific region within a video."""
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
counter = solutions.ObjectCounter(show=True, region=region_points, model=model_path)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
count_objects_in_region("path/to/video.mp4", "output_video.avi", "yolo11n.pt")
```
Explore more configurations and options in the [Object Counting](#object-counting-using-ultralytics-yolo11) section.
### What are the advantages of using Ultralytics YOLO11 for object counting?
Using Ultralytics YOLO11 for object counting offers several advantages:
1. **Resource Optimization:** It facilitates efficient resource management by providing accurate counts, helping optimize resource allocation in industries like inventory management.
2. **Enhanced Security:** It enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
3. **Informed Decision-Making:** It offers valuable insights for decision-making, optimizing processes in domains like retail, traffic management, and more.
For real-world applications and code examples, visit the [Advantages of Object Counting](#advantages-of-object-counting) section.
### How can I count specific classes of objects using Ultralytics YOLO11?
To count specific classes of objects using Ultralytics YOLO11, you need to specify the classes you are interested in during the tracking phase. Below is a Python example:
```python
import cv2
from ultralytics import solutions
def count_specific_classes(video_path, output_video_path, model_path, classes_to_count):
"""Count specific classes of objects in a video."""
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
line_points = [(20, 400), (1080, 400)]
counter = solutions.ObjectCounter(show=True, region=line_points, model=model_path, classes=classes_to_count)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
count_specific_classes("path/to/video.mp4", "output_specific_classes.avi", "yolo11n.pt", [0, 2])
```
In this example, `classes_to_count=[0, 2]`, which means it counts objects of class `0` and `2` (e.g., person and car).
### Why should I use YOLO11 over other [object detection](https://www.ultralytics.com/glossary/object-detection) models for real-time applications?
Ultralytics YOLO11 provides several advantages over other object detection models like Faster R-CNN, SSD, and previous YOLO versions:
1. **Speed and Efficiency:** YOLO11 offers real-time processing capabilities, making it ideal for applications requiring high-speed inference, such as surveillance and autonomous driving.
2. **[Accuracy](https://www.ultralytics.com/glossary/accuracy):** It provides state-of-the-art accuracy for object detection and tracking tasks, reducing the number of false positives and improving overall system reliability.
3. **Ease of Integration:** YOLO11 offers seamless integration with various platforms and devices, including mobile and edge devices, which is crucial for modern AI applications.
4. **Flexibility:** Supports various tasks like object detection, segmentation, and tracking with configurable models to meet specific use-case requirements.
Check out Ultralytics [YOLO11 Documentation](https://docs.ultralytics.com/models/yolo11/) for a deeper dive into its features and performance comparisons.
### Can I use YOLO11 for advanced applications like crowd analysis and traffic management?
Yes, Ultralytics YOLO11 is perfectly suited for advanced applications like crowd analysis and traffic management due to its real-time detection capabilities, scalability, and integration flexibility. Its advanced features allow for high-accuracy object tracking, counting, and classification in dynamic environments. Example use cases include:
- **Crowd Analysis:** Monitor and manage large gatherings, ensuring safety and optimizing crowd flow.
- **Traffic Management:** Track and count vehicles, analyze traffic patterns, and manage congestion in real-time.
For more information and implementation details, refer to the guide on [Real World Applications](#real-world-applications) of object counting with YOLO11.
|