|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utilities for generating text.""" |
|
|
|
import copy |
|
import json |
|
import math |
|
import os |
|
import time |
|
from typing import List, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from megatron import print_rank_0 |
|
from megatron import mpu |
|
from megatron.utils import get_ltor_masks_and_position_ids, is_mp_rank_0 |
|
from megatron.data.indexed_dataset import make_builder, make_dataset |
|
from megatron.mpu.mappings import gather_from_model_parallel_region |
|
|
|
|
|
def get_batch(neox_args, context_tokens: torch.Tensor): |
|
""" |
|
Generate batch from context tokens. Attention mask and position ids are created. Returned tensors will be on CUDA. |
|
|
|
neox_args: NeoXArgs. |
|
context_tokens: torch tensor with dimensions [batch, context_size] |
|
|
|
returns: tuple of torch tensors (tokens, attention_mask, position_ids) on CUDA |
|
""" |
|
|
|
|
|
tokens = context_tokens.contiguous().cuda() |
|
|
|
attention_mask, _, position_ids = get_ltor_masks_and_position_ids( |
|
data=tokens, |
|
eod_token=neox_args.tokenizer.eod, |
|
eod_mask_loss=neox_args.eod_mask_loss, |
|
) |
|
return tokens, attention_mask, position_ids |
|
|
|
|
|
def pad_batch( |
|
context_tokens: List[List[int]], pad_id: int, pad_len: int, truncate: bool = False |
|
): |
|
""" |
|
pads context lengths in context_tokens with pad_id to equal neox_args.seq_length, |
|
and returns the padded batch and the new lengths. |
|
|
|
context_tokens: list of lists of tokens |
|
pad_id: int, integer to use as padding token |
|
pad_len: int, context length to be padded; all batch items will be padded to the same length |
|
truncate: bool, if True, truncate context tokens to pad_len if they are longer than pad_len |
|
|
|
returns: tuple of padded context tokens and a list of unpadded token count |
|
""" |
|
|
|
context_lengths = [] |
|
for i, tokens in enumerate(context_tokens): |
|
context_length = len(tokens) |
|
if context_length < pad_len: |
|
tokens.extend([pad_id] * (pad_len - context_length)) |
|
elif context_length > pad_len: |
|
if not truncate: |
|
raise ValueError("context_length is bigger than to be padded length") |
|
context_tokens[i] = tokens[:pad_len] |
|
context_length = pad_len |
|
context_lengths.append(context_length) |
|
return context_tokens, context_lengths |
|
|
|
|
|
def filter_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")): |
|
""" |
|
Filters the logits using top_k / top_p, filling any filtered vocab items with filter_value (defaults to -inf). |
|
|
|
This function has been mostly taken from huggingface conversational ai code at |
|
https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313 |
|
|
|
When both top_k and top_p are specified, tokens are first filtered according to top_k, renormalized, and then filtered according to top_p. |
|
|
|
logits: torch.Tensor -> logits of megatron model. |
|
top_k: integer -> integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token. |
|
top_p: float -> Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p. |
|
|
|
returns: (filtered) logits""" |
|
|
|
if top_k > 0: |
|
|
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits[indices_to_remove] = filter_value |
|
|
|
if top_p > 0.0: |
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
for i in range(sorted_indices.size(0)): |
|
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] |
|
logits[i][indices_to_remove] = filter_value |
|
|
|
return logits |
|
|
|
|
|
def switch(val1, val2, boolean): |
|
""" |
|
replaces items in val1 with items in val2 where boolean = True |
|
""" |
|
boolean = boolean.type_as(val1) |
|
return (1 - boolean) * val1 + boolean * val2 |
|
|
|
|
|
def forward_model(model, model_inputs, is_pipe_parallel=False) -> torch.Tensor: |
|
""" |
|
Runs model.forward(model_inputs) |
|
|
|
We need to create a wrapper for this function because deepspeed pipe parallel modules operate differently to normal models. |
|
|
|
model: a Megatron model. |
|
model_inputs: tuple containing model args |
|
|
|
returns: torch.Tensor containing the logits of the model |
|
""" |
|
|
|
|
|
if not is_pipe_parallel: |
|
return model.module(model_inputs) |
|
else: |
|
|
|
|
|
|
|
|
|
model_inputs = iter([{"text": F.pad(model_inputs[0], pad=(0, 1))}]) |
|
|
|
|
|
micro_batches_before = model.micro_batches |
|
model.micro_batches = 1 |
|
|
|
|
|
|
|
|
|
|
|
model.first_output_send = True |
|
model.pipe_recv_buf = None |
|
|
|
loss, logits = model.eval_batch(model_inputs, return_logits=True) |
|
model.micro_batches = micro_batches_before |
|
return logits |
|
|
|
|
|
def broadcast_terminate_signal(terminate_runs: int): |
|
"""Send signal to all workers to terminate if we've finished the process""" |
|
terminate_runs_tensor = torch.cuda.LongTensor([terminate_runs]) |
|
torch.distributed.broadcast( |
|
terminate_runs_tensor, |
|
mpu.get_model_parallel_src_rank(), |
|
group=mpu.get_model_parallel_group(), |
|
) |
|
return terminate_runs_tensor[0].item() |
|
|
|
|
|
def stop_tokens_in_completion(stop_tokens, context_tokens, batch_index, current_index): |
|
if stop_tokens is None: |
|
return False |
|
res = [] |
|
for token_group in stop_tokens: |
|
context = context_tokens[batch_index, : current_index + 1] |
|
context = context[-len(token_group) :] |
|
if context.shape[0] == token_group.shape[0]: |
|
res.append(all(token_group == context)) |
|
else: |
|
res.append(False) |
|
return any(res) |
|
|
|
|
|
def stream_tokens( |
|
neox_args, |
|
model, |
|
context_tokens: List[List[int]], |
|
eos_token_id: int = None, |
|
maximum_tokens: int = None, |
|
recompute: bool = False, |
|
temperature: float = 0.0, |
|
top_k: int = 0, |
|
top_p: float = 0.0, |
|
stop_tokens=None, |
|
): |
|
""" |
|
iterator producing text completions |
|
|
|
neox_args: NeoXArgs. |
|
model: a Megatron model. |
|
context_tokens: the prompt to complete; unpadded list of lists of tokens ids |
|
context_lengths: lengths of context tokens of dimension [batch]; the context length records for each bach item how many non-padded tokens are provided |
|
eos_token_id: end of text token at which completion is terminated, even if max_tokes count has not been reached |
|
attention_mask: attention mask for megatron model. |
|
position_ids: position ids for positional encoding. |
|
maximum_tokens: maximum number of tokens to be generated; careful! if a batch input is provided maximum_tokens specifies the maximum number of forwards. |
|
longer batch items get less generated tokens. |
|
recompute: flag indicating whether a cache is used for already forwarded tokens (true) or whether all tokens are recomputed at every iteration (false) |
|
temperature (default 0.0): exponential scaling output distribution ("higher == more risk") |
|
top_k (default 0): integer -> integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token. |
|
top_p (default 0.0): float -> Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p. |
|
note: greedy decoding is used if temperature is 0.0, top_k is 0 and top_p is 0.0 |
|
yields: ( |
|
tokens (completions from model), |
|
token_generation_start_index (token index per batch item for the first generated token), |
|
token_generation_end_index (token index per batch item for the last generated token), |
|
logits (logits which are so far computed, zeros otherwise), |
|
is_done (flag for each bach item indicating whether an eod token was generated) |
|
) |
|
|
|
* each iteration adds a generated token to the context_tokens |
|
* output contains both context_tokens from input and generated tokens |
|
* if batch items have different lengths, the iterator will start at the first completion and return the unchanged input context token otherwise |
|
""" |
|
|
|
model.eval() |
|
|
|
|
|
context_tokens, context_lengths = pad_batch( |
|
copy.deepcopy(context_tokens), |
|
pad_id=neox_args.tokenizer.eod, |
|
pad_len=neox_args.seq_length, |
|
) |
|
|
|
|
|
context_tokens = torch.cuda.LongTensor(context_tokens) |
|
if stop_tokens: |
|
if len(stop_tokens) > 0 and type(stop_tokens[0]) is not list: |
|
stop_tokens = [stop_tokens] |
|
for i in range(0, len(stop_tokens)): |
|
stop_tokens[i] = torch.cuda.LongTensor(stop_tokens[i]) |
|
|
|
|
|
token_generation_start_index = torch.cuda.LongTensor(context_lengths) |
|
torch.distributed.broadcast( |
|
context_tokens, |
|
mpu.get_model_parallel_src_rank(), |
|
group=mpu.get_model_parallel_group(), |
|
) |
|
torch.distributed.broadcast( |
|
token_generation_start_index, |
|
mpu.get_model_parallel_src_rank(), |
|
group=mpu.get_model_parallel_group(), |
|
) |
|
|
|
|
|
context_tokens, attention_mask, position_ids = get_batch(neox_args, context_tokens) |
|
|
|
|
|
eos_token_id = eos_token_id or neox_args.tokenizer.eod |
|
maximum_tokens = maximum_tokens or ( |
|
neox_args.seq_length - token_generation_start_index.max().item() - 1 |
|
) |
|
batch_size = context_tokens.size(0) |
|
|
|
|
|
|
|
token_index_to_generate = token_generation_start_index.min().item() |
|
first_token_index_to_generate = token_index_to_generate |
|
last_token_index_to_generate = min( |
|
neox_args.seq_length |
|
- 1, |
|
token_index_to_generate + maximum_tokens - 1, |
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
state_is_done = torch.zeros([batch_size]).byte().cuda() |
|
token_generation_end_index = torch.ones([batch_size]).long().cuda() * (-1) |
|
generation_logits = ( |
|
torch.empty(maximum_tokens, neox_args.padded_vocab_size).float().cuda() |
|
) |
|
|
|
while token_index_to_generate <= last_token_index_to_generate: |
|
if recompute: |
|
model_inputs = ( |
|
context_tokens, |
|
position_ids, |
|
attention_mask, |
|
) |
|
logits = forward_model(model, model_inputs, neox_args.is_pipe_parallel) |
|
if logits is not None: |
|
generated_token_logits = logits[ |
|
:, token_index_to_generate - 1, : |
|
] |
|
else: |
|
if token_index_to_generate == first_token_index_to_generate: |
|
tokens_to_use = context_tokens[:, :token_index_to_generate] |
|
positions_to_use = position_ids[:, :token_index_to_generate] |
|
else: |
|
tokens_to_use = context_tokens[:, token_index_to_generate - 1].view( |
|
batch_size, -1 |
|
) |
|
positions_to_use = position_ids[ |
|
:, token_index_to_generate - 1 |
|
].view(batch_size, -1) |
|
|
|
model_inputs = ( |
|
tokens_to_use, |
|
positions_to_use, |
|
attention_mask, |
|
) |
|
|
|
logits = forward_model(model, model_inputs, neox_args.is_pipe_parallel) |
|
if logits is not None: |
|
generated_token_logits = ( |
|
logits[:, -1].view(batch_size, -1).contiguous() |
|
) |
|
|
|
if logits is not None: |
|
|
|
if temperature == 0.0 and top_k == 0 and top_p == 0.0: |
|
generated_tokens = torch.argmax( |
|
generated_token_logits, dim=-1 |
|
).view(-1) |
|
else: |
|
generated_token_logits = generated_token_logits.float() |
|
if temperature > 0.0: |
|
generated_token_logits /= temperature |
|
generated_token_logits = filter_logits( |
|
generated_token_logits, top_k=top_k, top_p=top_p |
|
) |
|
next_token_log_probs = F.softmax(generated_token_logits, dim=-1) |
|
generated_tokens = torch.multinomial( |
|
next_token_log_probs, num_samples=1 |
|
).view(-1) |
|
|
|
if neox_args.return_logits: |
|
generation_logits[ |
|
token_index_to_generate - 1 |
|
] = generated_token_logits[0] |
|
|
|
if neox_args.is_pipe_parallel: |
|
|
|
src_rank = model.grid.stage_to_global(model.num_stages - 1) |
|
generated_tokens = ( |
|
generated_tokens |
|
if logits is not None |
|
else torch.zeros(batch_size, dtype=torch.long).cuda() |
|
) |
|
torch.distributed.broadcast( |
|
tensor=generated_tokens, |
|
src=src_rank, |
|
group=mpu.get_pipe_parallel_group(), |
|
) |
|
|
|
|
|
state_started = ( |
|
token_generation_start_index <= token_index_to_generate |
|
) |
|
|
|
|
|
context_tokens[:, token_index_to_generate] = switch( |
|
context_tokens[:, token_index_to_generate].view(-1), |
|
generated_tokens, |
|
state_started, |
|
) |
|
|
|
|
|
state_done = ( |
|
generated_tokens == eos_token_id |
|
).byte() & state_started.byte() |
|
state_just_finished = (state_done & ~state_is_done).bool() |
|
state_is_done = state_is_done | state_done |
|
stop_tokens_produced = torch.zeros_like(state_is_done) |
|
for batch_idx, ctx in enumerate(context_tokens): |
|
stop_tokens_produced[batch_idx] = stop_tokens_in_completion( |
|
stop_tokens, context_tokens, batch_idx, token_index_to_generate |
|
) |
|
state_is_done = state_is_done | stop_tokens_produced |
|
|
|
token_generation_end_index[ |
|
(state_started.byte() & ~state_is_done).bool() |
|
] = token_index_to_generate |
|
|
|
token_index_to_generate += 1 |
|
|
|
yield context_tokens, token_generation_start_index, token_generation_end_index, generation_logits, state_is_done.bool() |
|
if torch.all(state_is_done): |
|
break |
|
|
|
|
|
def generate_samples_from_prompt( |
|
neox_args, |
|
model, |
|
text: Union[List[str], str], |
|
eos_token_id: int = None, |
|
maximum_tokens: int = 64, |
|
recompute: bool = False, |
|
temperature: float = 0.0, |
|
top_k: int = 0, |
|
top_p: float = 0.0, |
|
stop_tokens=None, |
|
): |
|
""" |
|
Generates samples from raw text and returns them in a dictionary. |
|
|
|
neox_args: NeoXArgs. |
|
model: a Megatron model |
|
text: either a single prompt (str) or a list of prompts (List[str]). |
|
|
|
eos_token_id: end of text token at which completion is terminated, even if max_tokes count has not been reached |
|
maximum_tokens: maximum number of tokens to be generated |
|
|
|
recompute: flag indicating whether a cache is used for already forwarded tokens (true) or whether all tokens are recomputed at every iteration (false) |
|
|
|
temperature (default 0.0): exponential scaling output distribution ("higher == more risk") |
|
top_k (default 0): integer -> integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token. |
|
top_p (default 0.0): float -> Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p. |
|
note: greedy decoding is used if temperature is 0.0, top_k is 0 and top_p is 0.0 |
|
|
|
returns: List[dict] -> a list of dicts containing the following fields: |
|
- 'context' (the input) |
|
- 'text' (the completion) |
|
- 'length' (the length of the completion in number of tokens) |
|
- 'finished': |
|
- 'message': a messaged associated with the generation procedure, can be a warning or error |
|
- 'duration_seconds': duration of the generation in seconds |
|
|
|
""" |
|
eos_token_id = eos_token_id or neox_args.tokenizer.eod |
|
|
|
|
|
assert any( |
|
[isinstance(text, str), isinstance(text, list)] |
|
), "Text should be in string or list form" |
|
if isinstance(text, str): |
|
text = [text] |
|
|
|
input_count = len(text) |
|
input_pos = 0 |
|
|
|
|
|
generated_texts = [] |
|
while True: |
|
|
|
start_time = time.time() |
|
|
|
terminate_runs = 0 |
|
if input_pos == input_count: |
|
terminate_runs = 1 |
|
else: |
|
raw_text = text[input_pos] |
|
input_pos += 1 |
|
|
|
if raw_text == "": |
|
context_tokens = [eos_token_id] |
|
else: |
|
context_tokens = neox_args.tokenizer.tokenize(raw_text) |
|
context_length = len(context_tokens) |
|
|
|
if context_length >= (neox_args.seq_length // 2): |
|
print_rank_0( |
|
"\nWarning! Context length", |
|
context_length, |
|
"\nPlease give smaller context (e.g. half of the " |
|
"max sequence length)!", |
|
) |
|
if not is_mp_rank_0(): |
|
context_tokens = neox_args.tokenizer.tokenize("EMPTY TEXT") |
|
context_length = len(context_tokens) |
|
terminate_runs = 0 |
|
|
|
terminate_runs = broadcast_terminate_signal(terminate_runs) |
|
if terminate_runs == 1: |
|
return generated_texts |
|
|
|
for ( |
|
batch_context_tokens, |
|
batch_token_generation_start_index, |
|
batch_token_generation_end_index, |
|
batch_generated_token_logits, |
|
is_done, |
|
) in stream_tokens( |
|
neox_args=neox_args, |
|
model=model, |
|
context_tokens=[context_tokens], |
|
eos_token_id=eos_token_id, |
|
maximum_tokens=maximum_tokens, |
|
recompute=recompute, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
stop_tokens=stop_tokens, |
|
): |
|
pass |
|
|
|
batch_context_tokens = batch_context_tokens.cpu().numpy().tolist() |
|
batch_token_generation_start_index = ( |
|
batch_token_generation_start_index.cpu().numpy().tolist() |
|
) |
|
batch_token_generation_end_index = ( |
|
batch_token_generation_end_index.cpu().numpy().tolist() |
|
) |
|
batch_is_done = is_done.cpu().numpy().tolist() |
|
|
|
for tokens, start_index, end_index, is_done in zip( |
|
batch_context_tokens, |
|
batch_token_generation_start_index, |
|
batch_token_generation_end_index, |
|
batch_is_done, |
|
): |
|
|
|
if end_index >= start_index: |
|
generated_tokens = tokens[start_index : end_index + 1] |
|
try: |
|
generated_text = neox_args.tokenizer.detokenize(generated_tokens) |
|
message = None |
|
except KeyError: |
|
generated_text = None |
|
message = "WARNING: generated token which doesn't exist." |
|
else: |
|
generated_text = None |
|
generated_tokens = [] |
|
|
|
message = "WARNING: text generation did not start; try different batching or adjust parameters" |
|
if is_mp_rank_0(): |
|
data = { |
|
"context": raw_text, |
|
"text": generated_text, |
|
"length": len(generated_tokens), |
|
"finished": is_done, |
|
"message": message, |
|
"duration_seconds": float(time.time() - start_time), |
|
} |
|
|
|
if neox_args.return_logits: |
|
data["logits"] = batch_generated_token_logits.cpu().numpy().tolist() |
|
|
|
generated_texts.append(data) |
|
|
|
return generated_texts |
|
|
|
|
|
def generate_samples_input_from_file( |
|
neox_args, |
|
model, |
|
input_file, |
|
output_file=None, |
|
eos_token_id: int = None, |
|
maximum_tokens: int = 64, |
|
prompt_end: str = "\n", |
|
recompute: bool = False, |
|
temperature: float = 0.0, |
|
top_k: int = 0, |
|
top_p: float = 0.0, |
|
): |
|
""" |
|
Generates samples from an input file and writes them to an output file. |
|
|
|
Reads prompts from neox_args.sample_input_file and writes completions to neox_args.sample_output_file |
|
|
|
neox_args: NeoXArgs. |
|
model: a Megatron model |
|
|
|
input_file: path to input file. Each line in the input file will be treated as separate prompt. The line break at the end of the line is not included in the prompt. |
|
output_file: file where generation results are to be stored in jsonl format. defaults to input_file+'.output.jsonl' if not defined |
|
|
|
eos_token_id: end of text token at which completion is terminated, even if max_tokes count has not been reached |
|
maximum_tokens: maximum number of tokens to be generated |
|
prompt_end: end of a single input prompt. Defaults to newline character '\n'. Other prompt-end sequences may be useful when generating indent-aware completions (e.g. code) |
|
|
|
recompute: flag indicating whether a cache is used for already forwarded tokens (true) or whether all tokens are recomputed at every iteration (false) |
|
|
|
temperature (default 0.0): exponential scaling output distribution ("higher == more risk") |
|
top_k (default 0): integer -> integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token. |
|
top_p (default 0.0): float -> Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p. |
|
|
|
note: greedy decoding is used if temperature is 0.0, top_k is 0 and top_p is 0.0 |
|
|
|
|
|
returns: List[dict] -> a list of dicts containing the following fields: |
|
- 'context' (the input) |
|
- 'text' (the completion) |
|
- 'length' (the length of the completion in number of tokens) |
|
- 'finished': |
|
- 'message': a messaged associated with the generation procedure, can be a warning or error |
|
- 'duration_seconds': duration of the generation in seconds |
|
""" |
|
|
|
print_rank_0( |
|
"generate_samples_input_from_file() loading input from {}".format(input_file) |
|
) |
|
with open(input_file, "r", encoding="utf-8") as f: |
|
prompts = f.read() |
|
prompts = prompts.split(prompt_end) |
|
prompts = [p.strip() for p in prompts] |
|
prompts = [p for p in prompts if len(p) > 0] |
|
print_rank_0( |
|
"generate_samples_input_from_file() prompts loaded: {}".format(len(prompts)) |
|
) |
|
|
|
if is_mp_rank_0(): |
|
if output_file is None: |
|
output_file = str(input_file) + ".output.jsonl" |
|
print_rank_0( |
|
"generate_samples_input_from_file() setting default output file to {}".format( |
|
output_file |
|
) |
|
) |
|
|
|
print_rank_0("generate_samples_input_from_file() generating...") |
|
generated_texts = generate_samples_from_prompt( |
|
neox_args=neox_args, |
|
model=model, |
|
text=prompts, |
|
eos_token_id=eos_token_id, |
|
maximum_tokens=maximum_tokens, |
|
recompute=recompute, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
) |
|
|
|
if is_mp_rank_0(): |
|
with open(output_file, "w") as f_out: |
|
for item in generated_texts: |
|
f_out.write(json.dumps(item) + "\n") |
|
print_rank_0("generate_samples_input_from_file() done") |
|
return generated_texts |
|
|
|
|
|
def generate_samples_unconditional( |
|
neox_args, |
|
model, |
|
number_of_samples: int = 10, |
|
output_file=None, |
|
eos_token_id: int = None, |
|
maximum_tokens: int = 64, |
|
recompute: bool = False, |
|
temperature: float = 0.0, |
|
top_k: int = 0, |
|
top_p: float = 0.0, |
|
): |
|
""" |
|
Generates samples unconditionially (no prompt) and yields them in a dictionary. |
|
|
|
neox_args: NeoXArgs. |
|
model: a Megatron model |
|
|
|
number_of_samples (default 10): number of unconditional samples to be generated |
|
|
|
output_file: file where generation results are to be stored in jsonl format. no file will be stored if omitted |
|
|
|
eos_token_id: end of text token at which completion is terminated, even if max_tokes count has not been reached |
|
maximum_tokens: maximum number of tokens to be generated |
|
prompt_end: end of a single input prompt. Defaults to newline character '\n'. Other prompt-end sequences may be useful when generating indent-aware completions (e.g. code). The interactive mode will reroll the user-input request until the stop-char is met |
|
|
|
recompute: flag indicating whether a cache is used for already forwarded tokens (true) or whether all tokens are recomputed at every iteration (false) |
|
|
|
temperature (default 0.0): exponential scaling output distribution ("higher == more risk") |
|
top_k (default 0): integer -> integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token. |
|
top_p (default 0.0): float -> Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p. |
|
|
|
note: greedy decoding is used if temperature is 0.0, top_k is 0 and top_p is 0.0 |
|
|
|
yields: dict containing the following fields: |
|
- 'context' (the input) |
|
- 'text' (the completion) |
|
- 'length' (the length of the completion in number of tokens) |
|
- 'finished': |
|
- 'message': a messaged associated with the generation procedure, can be a warning or error |
|
- 'duration_seconds': duration of the generation in seconds |
|
""" |
|
|
|
print_rank_0("generate_samples_unconditional() generating...") |
|
assert number_of_samples > 0, "number_of_samples must be > 0" |
|
generated_texts = generate_samples_from_prompt( |
|
neox_args=neox_args, |
|
model=model, |
|
text=["" for _ in range(number_of_samples)], |
|
eos_token_id=eos_token_id, |
|
maximum_tokens=maximum_tokens, |
|
recompute=recompute, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
) |
|
|
|
if is_mp_rank_0(): |
|
if output_file is not None: |
|
with open(output_file, "w") as f_out: |
|
for item in generated_texts: |
|
f_out.write(json.dumps(item) + "\n") |
|
print_rank_0("generate_samples_unconditional() done") |
|
return generated_texts |
|
|
|
|
|
def generate_samples_interactive( |
|
neox_args, |
|
model, |
|
maximum_tokens: int = 64, |
|
prompt_end: str = "\n", |
|
eos_token_id: int = None, |
|
recompute: bool = False, |
|
temperature: float = 0.0, |
|
top_k: int = 0, |
|
top_p: float = 0.0, |
|
): |
|
""" |
|
Generates samples unconditionially (no prompt) and yields them in a dictionary. |
|
|
|
neox_args: NeoXArgs. |
|
model: a Megatron model |
|
|
|
maximum_tokens: maximum number of tokens to be generated |
|
eos_token_id: end of text token at which completion is terminated, even if max_tokes count has not been reached |
|
|
|
recompute: flag indicating whether a cache is used for already forwarded tokens (true) or whether all tokens are recomputed at every iteration (false) |
|
|
|
temperature (default 0.0): exponential scaling output distribution ("higher == more risk") |
|
top_k (default 0): integer -> integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token. |
|
top_p (default 0.0): float -> Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p. |
|
|
|
note: greedy decoding is used if temperature is 0.0, top_k is 0 and top_p is 0.0 |
|
|
|
yields: dict containing the following fields: |
|
- 'context' (the input) |
|
- 'text' (the completion) |
|
- 'length' (the length of the completion in number of tokens) |
|
- 'finished': |
|
- 'message': a messaged associated with the generation procedure, can be a warning or error |
|
- 'duration_seconds': duration of the generation in seconds |
|
""" |
|
|
|
while True: |
|
model.module.clear_cache() |
|
torch.distributed.barrier(group=mpu.get_model_parallel_group()) |
|
terminate_runs = 0 |
|
|
|
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: |
|
os.system("clear") |
|
raw_text = "" |
|
while True: |
|
current_input = input("Context prompt >>> ") |
|
if ( |
|
prompt_end == "\n" |
|
): |
|
raw_text += current_input |
|
break |
|
if prompt_end in current_input: |
|
raw_text += current_input.split(prompt_end)[0] |
|
break |
|
raw_text += ( |
|
current_input + "\n" |
|
) |
|
context_tokens = neox_args.tokenizer.tokenize(raw_text) |
|
if len(context_tokens) == 0: |
|
context_tokens = [neox_args.tokenizer.eod] |
|
context_length = len(context_tokens) |
|
if context_length >= (neox_args.seq_length - 1): |
|
print_rank_0( |
|
"\nContext length" |
|
+ str(context_length) |
|
+ "\nReached max sequence length!" |
|
) |
|
terminate_runs = 1 |
|
else: |
|
context_tokens = neox_args.tokenizer.tokenize("EMPTY TEXT") |
|
context_length = len(context_tokens) |
|
|
|
terminate_runs = broadcast_terminate_signal(terminate_runs) |
|
if terminate_runs == 1: |
|
return |
|
for ( |
|
batch_context_tokens, |
|
batch_token_generation_start_index, |
|
batch_token_generation_end_index, |
|
batch_generated_token_logits, |
|
is_done, |
|
) in stream_tokens( |
|
neox_args=neox_args, |
|
model=model, |
|
context_tokens=[context_tokens], |
|
eos_token_id=eos_token_id, |
|
maximum_tokens=maximum_tokens, |
|
recompute=recompute, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
): |
|
if mpu.get_model_parallel_rank() == 0: |
|
generated_tokens = ( |
|
batch_context_tokens[0] |
|
.cpu() |
|
.numpy() |
|
.tolist()[ |
|
batch_token_generation_start_index[0] |
|
.item() : batch_token_generation_end_index[0] |
|
.item() |
|
+ 1 |
|
] |
|
) |
|
generated_text = neox_args.tokenizer.detokenize(generated_tokens) |
|
print_rank_0("Generated Text: " + generated_text) |
|
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: |
|
_ = input("\n<press enter to continue>") |
|
|
|
|
|
def get_logp(logits, labels, force_fp32=False): |
|
if force_fp32: |
|
logits = logits.float() |
|
logp = logits.log_softmax(dim=-1) |
|
return torch.gather(logp, dim=2, index=labels.unsqueeze(2)).squeeze(2) |
|
|
|
|
|
def precompute_logits(neox_args, model): |
|
""" |
|
Precomputes logprobs from training/testing/validation datasets |
|
|
|
Saves it to the same directory as the dataset with the model name appended to it |
|
|
|
neox_args: NeoXArgs. |
|
model: a Megatron model |
|
|
|
""" |
|
if neox_args.precompute_model_name is None: |
|
mdl_name = str(hash(neox_args.load)) |
|
else: |
|
mdl_name = neox_args.precompute_model_name |
|
print_rank_0("Precomputing logprobs...") |
|
model.eval() |
|
data_paths = list() |
|
if neox_args.train_data_paths is not None: |
|
for path in neox_args.train_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.test_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.valid_data_paths: |
|
data_paths.append(path) |
|
elif neox_args.pos_train_data_paths is not None: |
|
|
|
for path in neox_args.pos_train_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.neg_train_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.pos_valid_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.neg_valid_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.pos_test_data_paths: |
|
data_paths.append(path) |
|
for path in neox_args.neg_test_data_paths: |
|
data_paths.append(path) |
|
for path in data_paths: |
|
print_rank_0(f"Precomputing logits for {path}") |
|
|
|
out_path = path + f"_{mdl_name}" |
|
if os.path.exists(out_path + ".idx"): |
|
continue |
|
dataset = make_dataset(path, neox_args.data_impl, not neox_args.mmap_warmup) |
|
if is_mp_rank_0(): |
|
out_dataset = make_builder(out_path + ".bin", neox_args.data_impl) |
|
out_dataset._dtype = np.float32 |
|
i = 0 |
|
|
|
|
|
while i < int(math.ceil(len(dataset) / 8.0) * 8): |
|
start = time.time() |
|
model.module.clear_cache() |
|
if is_mp_rank_0(): |
|
offset = ( |
|
mpu.get_data_parallel_rank() |
|
* neox_args.train_micro_batch_size_per_gpu |
|
) |
|
context_tokens = [ |
|
[int(x) for x in dataset.get(j % len(dataset)).tolist()] |
|
for j in range( |
|
i + offset, |
|
i + (neox_args.train_micro_batch_size_per_gpu + offset), |
|
) |
|
] |
|
|
|
|
|
context_tokens, context_lengths = pad_batch( |
|
copy.deepcopy(context_tokens), |
|
pad_id=0, |
|
pad_len=neox_args.seq_length + 1, |
|
truncate=True, |
|
) |
|
|
|
label_tokens = [tokens[1:] for tokens in context_tokens] |
|
context_tokens = [tokens[:-1] for tokens in context_tokens] |
|
else: |
|
context_tokens = [ |
|
[0 for _ in range(neox_args.seq_length)] |
|
for _ in range(neox_args.batch_size) |
|
] |
|
label_tokens = [ |
|
[0 for _ in range(neox_args.seq_length)] |
|
for _ in range(neox_args.batch_size) |
|
] |
|
context_lengths = [0 for _ in range(neox_args.batch_size)] |
|
i += ( |
|
neox_args.train_micro_batch_size_per_gpu |
|
* mpu.get_data_parallel_world_size() |
|
) |
|
|
|
|
|
context_tokens = torch.cuda.LongTensor(context_tokens) |
|
label_tokens = torch.cuda.LongTensor(label_tokens) |
|
|
|
token_generation_start_index = torch.cuda.LongTensor(context_lengths) |
|
torch.distributed.broadcast( |
|
context_tokens, |
|
mpu.get_model_parallel_src_rank(), |
|
group=mpu.get_model_parallel_group(), |
|
) |
|
torch.distributed.broadcast( |
|
token_generation_start_index, |
|
mpu.get_model_parallel_src_rank(), |
|
group=mpu.get_model_parallel_group(), |
|
) |
|
torch.distributed.broadcast( |
|
label_tokens, |
|
mpu.get_model_parallel_src_rank(), |
|
group=mpu.get_model_parallel_group(), |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
context_tokens, attention_mask, position_ids = get_batch( |
|
neox_args, context_tokens |
|
) |
|
model_inputs = ( |
|
context_tokens, |
|
position_ids, |
|
attention_mask, |
|
) |
|
maybe_tuple = forward_model( |
|
model, model_inputs, neox_args.is_pipe_parallel |
|
) |
|
if isinstance(maybe_tuple, tuple): |
|
logits, _ = maybe_tuple |
|
else: |
|
logits = maybe_tuple |
|
if logits is not None: |
|
logits = gather_from_model_parallel_region(logits) |
|
logp = get_logp(logits, label_tokens, True).squeeze() |
|
if neox_args.is_pipe_parallel: |
|
|
|
src_rank = model.grid.stage_to_global(model.num_stages - 1) |
|
logp = ( |
|
logp |
|
if logits is not None |
|
else torch.zeros( |
|
neox_args.batch_size, dtype=torch.float32 |
|
).cuda() |
|
) |
|
torch.distributed.broadcast( |
|
tensor=logp, |
|
src=src_rank, |
|
group=mpu.get_pipe_parallel_group(), |
|
) |
|
logp = logp.squeeze() |
|
logp_list = [ |
|
torch.zeros_like(logp) |
|
for _ in range(mpu.get_data_parallel_world_size()) |
|
] |
|
torch.distributed.all_gather( |
|
logp_list, logp, group=mpu.get_data_parallel_group() |
|
) |
|
logp = torch.cat(logp_list, dim=0).cpu().numpy() |
|
if (mpu.get_model_parallel_rank() == 0) and ( |
|
mpu.get_data_parallel_rank() == 0 |
|
): |
|
for j in range(logp.shape[0]): |
|
out_dataset.add_item(logp[j]) |
|
out_dataset.end_document() |
|
print_rank_0(f"Processed {i} / {len(dataset)} in {time.time() - start}") |
|
if is_mp_rank_0(): |
|
out_dataset.finalize( |
|
out_path + ".idx", |
|
) |
|
torch.distributed.barrier() |
|
|