File size: 22,979 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import shutil
import itertools
from pathlib import Path
from abc import ABC, abstractmethod
from deepspeed.accelerator import get_accelerator
import pytest
from _pytest.outcomes import Skipped
from _pytest.fixtures import FixtureLookupError, FixtureFunctionMarker
import random
import train
import torch
import torch.distributed as dist
from torch.multiprocessing import Process
import torch.multiprocessing as mp
from yaml import load
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
from copy import deepcopy
import deepspeed
TEST_CHECKPOINT_DIR = "test_checkpoint"
TEST_LOG_DIR = "test_logs"
TEST_TENSORBOARD_DIR = "test_tensorboard"
# Worker timeout *after* the first worker has completed.
DEEPSPEED_UNIT_WORKER_TIMEOUT = 120
DEEPSPEED_TEST_TIMEOUT = 600
def get_xdist_worker_id():
xdist_worker = os.environ.get("PYTEST_XDIST_WORKER", None)
if xdist_worker is not None:
xdist_worker_id = xdist_worker.replace("gw", "")
return int(xdist_worker_id)
return None
def get_master_port():
master_port = os.environ.get("DS_TEST_PORT", "29503")
xdist_worker_id = get_xdist_worker_id()
if xdist_worker_id is not None:
master_port = str(int(master_port) + xdist_worker_id)
return master_port
_num_gpus = None
def set_accelerator_visible():
cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
xdist_worker_id = get_xdist_worker_id()
if xdist_worker_id is None:
xdist_worker_id = 0
if cuda_visible is None:
# CUDA_VISIBLE_DEVICES is not set, discover it using accelerator specific command instead
if get_accelerator().device_name() == "cuda":
if is_rocm_pytorch():
rocm_smi = subprocess.check_output(["rocm-smi", "--showid"])
gpu_ids = filter(
lambda s: "GPU" in s, rocm_smi.decode("utf-8").strip().split("\n")
)
num_accelerators = len(list(gpu_ids))
else:
nvidia_smi = subprocess.check_output(["nvidia-smi", "--list-gpus"])
num_accelerators = len(nvidia_smi.decode("utf-8").strip().split("\n"))
elif get_accelerator().device_name() == "xpu":
clinfo = subprocess.check_output(["clinfo"])
lines = clinfo.decode("utf-8").strip().split("\n")
num_accelerators = 0
for line in lines:
match = re.search("Device Type.*GPU", line)
if match:
num_accelerators += 1
elif get_accelerator().device_name() == "npu":
npu_smi = subprocess.check_output(["npu-smi", "info", "-l"])
num_accelerators = int(
npu_smi.decode("utf-8").strip().split("\n")[0].split(":")[1].strip()
)
else:
assert get_accelerator().device_name() == "cpu"
cpu_sockets = int(
subprocess.check_output(
'cat /proc/cpuinfo | grep "physical id" | sort -u | wc -l',
shell=True,
)
)
num_accelerators = cpu_sockets
cuda_visible = ",".join(map(str, range(num_accelerators)))
# rotate list based on xdist worker id, example below
# wid=0 -> ['0', '1', '2', '3']
# wid=1 -> ['1', '2', '3', '0']
# wid=2 -> ['2', '3', '0', '1']
# wid=3 -> ['3', '0', '1', '2']
dev_id_list = cuda_visible.split(",")
dev_id_list = dev_id_list[xdist_worker_id:] + dev_id_list[:xdist_worker_id]
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(dev_id_list)
def count_gpus():
global _num_gpus
if _num_gpus is None:
import subprocess
nvidia_smi = subprocess.check_output(["nvidia-smi", "--list-gpus"])
_num_gpus = len(nvidia_smi.decode("utf-8").strip().split("\n"))
return _num_gpus
def set_cuda_visibile():
cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
xdist_worker_id = get_xdist_worker_id()
if xdist_worker_id is None:
xdist_worker_id = 0
if cuda_visible is None:
# CUDA_VISIBLE_DEVICES is not set, discover it from nvidia-smi instead
import subprocess
nvidia_smi = subprocess.check_output(["nvidia-smi", "--list-gpus"])
num_gpus = len(nvidia_smi.decode("utf-8").strip().split("\n"))
cuda_visible = ",".join(map(str, range(num_gpus)))
# rotate list based on xdist worker id, example below
# wid=0 -> ['0', '1', '2', '3']
# wid=1 -> ['1', '2', '3', '0']
# wid=2 -> ['2', '3', '0', '1']
# wid=3 -> ['3', '0', '1', '2']
dev_id_list = cuda_visible.split(",")
dev_id_list = dev_id_list[xdist_worker_id:] + dev_id_list[:xdist_worker_id]
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(dev_id_list)
def get_root_directory():
return Path(__file__).parents[1]
def get_config_directory():
return get_root_directory() / "configs"
def get_configs_with_path(configs):
return [str(get_config_directory() / cfg) for cfg in configs]
def clear_test_dirs():
log_dir = os.path.join(get_root_directory(), TEST_LOG_DIR)
if os.path.isdir(log_dir):
shutil.rmtree(log_dir)
checkpoint_dir = os.path.join(get_root_directory(), TEST_CHECKPOINT_DIR)
if os.path.isdir(checkpoint_dir):
shutil.rmtree(checkpoint_dir)
tensorboard_dir = os.path.join(get_root_directory(), TEST_TENSORBOARD_DIR)
if os.path.isdir(tensorboard_dir):
shutil.rmtree(tensorboard_dir)
class DistributedExec(ABC):
"""
Base class for distributed execution of functions/methods. Contains common
methods needed for DistributedTest and DistributedFixture.
"""
world_size = 2
backend = get_accelerator().communication_backend_name()
init_distributed = True
set_dist_env = True
requires_cuda_env = True
reuse_dist_env = False
_pool_cache = {}
exec_timeout = DEEPSPEED_TEST_TIMEOUT
@abstractmethod
def run(self):
...
def __call__(self, request=None):
self._fixture_kwargs = self._get_fixture_kwargs(request, self.run)
world_size = self.world_size
if self.requires_cuda_env and not get_accelerator().is_available():
pytest.skip("only supported in accelerator environments.")
if isinstance(world_size, int):
world_size = [world_size]
for procs in world_size:
self._launch_procs(procs)
def _get_fixture_kwargs(self, request, func):
if not request:
return {}
# Grab fixture / parametrize kwargs from pytest request object
fixture_kwargs = {}
params = inspect.getfullargspec(func).args
params.remove("self")
for p in params:
try:
fixture_kwargs[p] = request.getfixturevalue(p)
except FixtureLookupError:
pass # test methods can have kwargs that are not fixtures
return fixture_kwargs
def _launch_procs(self, num_procs):
# Verify we have enough accelerator devices to run this test
if (
get_accelerator().is_available()
and get_accelerator().device_count() < num_procs
):
pytest.skip(
f"Skipping test because not enough GPUs are available: {num_procs} required, {get_accelerator().device_count()} available"
)
mp.set_start_method("spawn", force=True)
# Create process pool or use cached one
master_port = None
if self.reuse_dist_env:
if num_procs not in self._pool_cache:
self._pool_cache[num_procs] = mp.Pool(processes=num_procs)
master_port = get_master_port()
pool = self._pool_cache[num_procs]
else:
pool = mp.Pool(processes=num_procs)
master_port = get_master_port()
# Run the test
args = [(local_rank, num_procs, master_port) for local_rank in range(num_procs)]
skip_msgs_async = pool.starmap_async(self._dist_run, args)
try:
skip_msgs = skip_msgs_async.get(self.exec_timeout)
except mp.TimeoutError:
# Shortcut to exit pytest in the case of a hanged test. This
# usually means an environment error and the rest of tests will
# hang (causing super long unit test runtimes)
pytest.exit("Test hanged, exiting", returncode=0)
# Tear down distributed environment and close process pools
self._close_pool(pool, num_procs)
# If we skipped a test, propagate that to this process
if any(skip_msgs):
assert len(set(skip_msgs)) == 1, "Multiple different skip messages received"
pytest.skip(skip_msgs[0])
def _dist_run(self, local_rank, num_procs, master_port):
skip_msg = ""
if not dist.is_initialized():
"""Initialize deepspeed.comm and execute the user function."""
if self.set_dist_env:
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = str(master_port)
os.environ["LOCAL_RANK"] = str(local_rank)
# NOTE: unit tests don't support multi-node so local_rank == global rank
os.environ["RANK"] = str(local_rank)
# In case of multiprocess launching LOCAL_SIZE should be same as WORLD_SIZE
# DeepSpeed single node launcher would also set LOCAL_SIZE accordingly
os.environ["LOCAL_SIZE"] = str(num_procs)
os.environ["WORLD_SIZE"] = str(num_procs)
# turn off NCCL logging if set
os.environ.pop("NCCL_DEBUG", None)
if get_accelerator().is_available():
set_accelerator_visible()
if get_accelerator().is_available():
get_accelerator().set_device(local_rank)
if self.init_distributed:
deepspeed.init_distributed(dist_backend=self.backend)
dist.barrier()
try:
self.run(**self._fixture_kwargs)
except BaseException as e:
if isinstance(e, Skipped):
skip_msg = e.msg
else:
raise e
return skip_msg
def _dist_destroy(self):
if (dist is not None) and dist.is_initialized():
dist.barrier()
dist.destroy_process_group()
def _close_pool(self, pool, num_procs, force=False):
if force or not self.reuse_dist_env:
msg = pool.starmap(self._dist_destroy, [() for _ in range(num_procs)])
pool.close()
pool.join()
class DistributedFixture(DistributedExec):
"""
Implementation that extends @pytest.fixture to allow for distributed execution.
This is primarily meant to be used when a test requires executing two pieces of
code with different world sizes.
There are 2 parameters that can be modified:
- world_size: int = 2 -- the number of processes to launch
- backend: Literal['nccl','mpi','gloo'] = 'nccl' -- which backend to use
Features:
- able to call pytest.skip() inside fixture
- can be reused by multiple tests
- can accept other fixtures as input
Limitations:
- cannot use @pytest.mark.parametrize
- world_size cannot be modified after definition and only one world_size value is accepted
- any fixtures used must also be used in the test that uses this fixture (see example below)
- return values cannot be returned. Passing values to a DistributedTest
object can be achieved using class_tmpdir and writing to file (see example below)
Usage:
- must implement a run(self, ...) method
- fixture can be used by making the class name input to a test function
Example:
@pytest.fixture(params=[10,20])
def regular_pytest_fixture(request):
return request.param
class distributed_fixture_example(DistributedFixture):
world_size = 4
def run(self, regular_pytest_fixture, class_tmpdir):
assert int(os.environ["WORLD_SIZE"]) == self.world_size
local_rank = os.environ["LOCAL_RANK"]
print(f"Rank {local_rank} with value {regular_pytest_fixture}")
with open(os.path.join(class_tmpdir, f"{local_rank}.txt"), "w") as f:
f.write(f"{local_rank},{regular_pytest_fixture}")
class TestExample(DistributedTest):
world_size = 1
def test(self, distributed_fixture_example, regular_pytest_fixture, class_tmpdir):
assert int(os.environ["WORLD_SIZE"]) == self.world_size
for rank in range(4):
with open(os.path.join(class_tmpdir, f"{rank}.txt"), "r") as f:
assert f.read() == f"{rank},{regular_pytest_fixture}"
"""
is_dist_fixture = True
# These values are just placeholders so that pytest recognizes this as a fixture
_pytestfixturefunction = FixtureFunctionMarker(scope="function", params=None)
__name__ = ""
def __init__(self):
assert isinstance(
self.world_size, int
), "Only one world size is allowed for distributed fixtures"
self.__name__ = type(self).__name__
_pytestfixturefunction = FixtureFunctionMarker(
scope="function", params=None, name=self.__name__
)
class DistributedTest(DistributedExec):
"""
Implementation for running pytest with distributed execution.
There are 2 parameters that can be modified:
- world_size: Union[int,List[int]] = 2 -- the number of processes to launch
- backend: Literal['nccl','mpi','gloo'] = 'nccl' -- which backend to use
Features:
- able to call pytest.skip() inside tests
- works with pytest fixtures, parametrize, mark, etc.
- can contain multiple tests (each of which can be parametrized separately)
- class methods can be fixtures (usable by tests in this class only)
- world_size can be changed for individual tests using @pytest.mark.world_size(world_size)
- class_tmpdir is a fixture that can be used to get a tmpdir shared among
all tests (including DistributedFixture)
Usage:
- class name must start with "Test"
- must implement one or more test*(self, ...) methods
Example:
@pytest.fixture(params=[10,20])
def val1(request):
return request.param
@pytest.mark.fast
@pytest.mark.parametrize("val2", [30,40])
class TestExample(DistributedTest):
world_size = 2
@pytest.fixture(params=[50,60])
def val3(self, request):
return request.param
def test_1(self, val1, val2, str1="hello world"):
assert int(os.environ["WORLD_SIZE"]) == self.world_size
assert all(val1, val2, str1)
@pytest.mark.world_size(1)
@pytest.mark.parametrize("val4", [70,80])
def test_2(self, val1, val2, val3, val4):
assert int(os.environ["WORLD_SIZE"]) == 1
assert all(val1, val2, val3, val4)
"""
def __init__(self):
self.is_dist_test = True
# Temporary directory that is shared among test methods in a class
@pytest.fixture(autouse=True, scope="class")
def class_tmpdir(self, tmpdir_factory):
fn = tmpdir_factory.mktemp(self.__class__.__name__)
return fn
def run(self, **fixture_kwargs):
self._current_test(**fixture_kwargs)
def __call__(self, request):
self._current_test = self._get_current_test_func(request)
self._fixture_kwargs = self._get_fixture_kwargs(request, self._current_test)
if self.requires_cuda_env and not get_accelerator().is_available():
pytest.skip("only supported in accelerator environments.")
# Catch world_size override pytest mark
for mark in getattr(request.function, "pytestmark", []):
if mark.name == "world_size":
world_size = mark.args[0]
break
else:
world_size = self.world_size
if isinstance(world_size, int):
world_size = [world_size]
for procs in world_size:
self._launch_procs(procs)
time.sleep(0.5)
def _get_current_test_func(self, request):
# DistributedTest subclasses may have multiple test methods
func_name = request.function.__name__
return getattr(self, func_name)
def get_test_path(filename):
curr_path = Path(__file__).parent
return str(curr_path.joinpath(filename))
def model_setup(yaml_list=None, param_dict=None, clear_data=True):
from megatron.neox_arguments import NeoXArgs
from megatron.mpu import destroy_model_parallel
from megatron import initialize_megatron
from megatron.training import setup_model_and_optimizer
destroy_model_parallel() # mpu model parallel contains remaining global vars
if clear_data and (
not torch.distributed.is_initialized()
or torch.distributed.get_world_size() == 1
or torch.distributed.get_rank() == 0
):
clear_test_dirs()
overwrite_values = {
"user_script": str(get_root_directory() / "train.py"),
"save": TEST_CHECKPOINT_DIR,
"load": TEST_CHECKPOINT_DIR,
"log_dir": TEST_LOG_DIR,
"tensorboard_dir": TEST_TENSORBOARD_DIR,
}
# should not both be none
assert yaml_list is not None or param_dict is not None
# initially load config from files as would be the case in deepy.py
if yaml_list is not None:
args_loaded = NeoXArgs.from_ymls(yaml_list, overwrite_values=overwrite_values)
else:
p_dict = param_dict.copy()
p_dict.update(overwrite_values)
args_loaded = NeoXArgs.from_dict(p_dict)
args_loaded.build_tokenizer()
initialize_megatron(neox_args=args_loaded)
model, optimizer, lr_scheduler = setup_model_and_optimizer(
neox_args=args_loaded, use_cache=True
)
return model, optimizer, lr_scheduler, args_loaded
def simulate_deepy_env(monkeypatch, input_args):
from megatron.neox_arguments import NeoXArgs
monkeypatch.setenv("WORLD_SIZE", "1")
monkeypatch.setenv("RANK", "0")
neox_args = NeoXArgs.consume_deepy_args(input_args)
deepspeed_main_args = neox_args.get_deepspeed_main_args()
return deepspeed_main_args
def save_random_model(input_args, model_dir, train_iters=0):
# Save randomly initialised model
train_args = {
"do_train": False,
"train_iters": train_iters,
"save": model_dir,
"extra_save_iters": [train_iters],
}
train.main(input_args=input_args, overwrite_values=train_args)
def bounded_product(sequence, n=None, seed=None):
"""
Returns a shuffled, bounded cartesian product of the input sequence.
Designed to cover as wide a range of permutations as possible with a limited number of iterations.
Will manifest the whole list in memory, so not suitable for super large sequences.
:param sequence: iterable
:param n: length of returned list
:param seed: random seed for reproducibility
:return: list
"""
p = list(itertools.product(*sequence))
if seed is not None:
random.seed(seed)
random.shuffle(p)
return p if n is None else p[:n]
def model_setup_simple(deepspeed_main_args, overwrite_values, iteration=None):
from megatron.neox_arguments import NeoXArgs
from megatron import initialize_megatron
from megatron.training import setup_model_and_optimizer
neox_args = NeoXArgs.consume_neox_args(
input_args=deepspeed_main_args, overwrite_values=overwrite_values
)
neox_args.configure_distributed_args()
neox_args.build_tokenizer()
initialize_megatron(neox_args=neox_args)
model, optimizer, lr_scheduler = setup_model_and_optimizer(
neox_args=neox_args, use_cache=False
)
return model, optimizer, lr_scheduler, neox_args
def parametrize(
params_to_test: dict, max_tests: int = 50, seed: int = None, with_names=True
):
"""
Generates a random sample of max_tests length of all possible combinations of values in
`params_to_test`.
In `params_to_test` you can either specify one value, and all possible settings of that value,
or two values separated by a comma, and all possible combinations of those two values in tandem.
i.e "hidden_size,num_heads": [[768,12], [1024,32], [2048, 64]]
so the first item in each list is a value of `hidden_size` and the second a value of `num_heads`
this is useful for reducing the size of possible tests for values we know are unlikely to interact beforehand,
since the cartesian product can grow very large.
:param params_to_test: dict of neox params
:param max_tests: maximum number of tests to run
:param seed: random seed
:return: a list of neox param dicts to pass to a parametrized unit test
"""
keys, values = zip(*params_to_test.items())
ret = []
if with_names:
experiments = []
for p in bounded_product(values, n=max_tests, seed=seed):
experiment = dict(zip(keys, p))
to_pop = []
to_add = {}
for k, v in experiment.items():
if "," in k:
keys_split = [i.strip() for i in k.split(",")]
values_separated = experiment[k]
to_pop.append(k)
assert len(values_separated) == len(keys_split)
new_dict = dict(zip(keys_split, values_separated))
to_add.update(new_dict)
experiment.update(to_add)
for k in to_pop:
experiment.pop(k)
base = deepcopy(BASE_CONFIG)
base.update(experiment)
ret.append(base)
if with_names:
experiments.append(experiment)
if with_names:
return ret, [dict_repr(d) for d in experiments]
return ret
def dict_repr(d):
return " ".join([f"{str(k)} : {str(v)}" for k, v in d.items()])
binary = [True, False]
with open("tests/config/test_setup.yml", "r") as f:
BASE_CONFIG = load(f, Loader=Loader)
print(f"Base Config:\n{BASE_CONFIG}")
|