File size: 42,012 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 |
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
from dataclasses import dataclass
try:
from .template import NeoXArgsTemplate
except ImportError:
from template import NeoXArgsTemplate
try:
from typing import List, Literal, Union, Optional, Any
except ImportError:
from typing_extensions import List, Literal, Union, Optional
ATTENTION_TYPE_CHOICES = [
"global",
"local",
"sparse_fixed",
"sparse_variable",
"bigbird",
"bslongformer",
"gmlp",
"amlp",
"flash",
"rwkv",
"mamba",
]
def get_git_commit_hash():
"""Gets the git commit hash of your current repo (if it exists)"""
try:
git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
git_hash = git_hash.decode()
except (subprocess.CalledProcessError, FileNotFoundError):
git_hash = None
return git_hash
@dataclass
class NeoXArgsParallelism(NeoXArgsTemplate):
"""
Parallelism Arguments
"""
pipe_parallel_size: int = 0
"""
Number of pipeline parallel stages. Disable with 0.
"""
model_parallel_size: int = 1
"""
Size of the model parallelism.
"""
pipe_partition_method: str = "type:transformer|mlp"
"""
method used to distribute model layers across pipeline stages. Choose from "parameters", which balances the number
of parameters on each pipeline stage, "uniform", which naively balances the number of layers per stage, or
"type:[regex]", which balances layers whose class names match [regex]
"""
world_size: int = None
"""
Total world size (i.e number of gpus in cluster). Configured post-launch using distributed launcher
"""
is_pipe_parallel: bool = False
"""
flag to determine whether pipeline parallelism is on - shouldn't be set by user, is automatically determined
according to pipeline parallel size.
"""
sequence_parallel: bool = False
"""
flag to determine whether Megatron-style Sequence Parallelism (https://arxiv.org/abs/2205.05198)
(Layernorm inputs and activations are sharded across model parallel group) will be used. Has no effect when model_parallel_size is 1.
**Set by user, in contrast to neox_args.is_pipe_parallel.**
"""
expert_interval: int = 2
"""
Have one MoE layer every expert_interval layers
"""
@dataclass
class NeoXArgsModel(NeoXArgsTemplate):
"""
Model Arguments
"""
precision: Literal["fp16", "fp32", "bfloat16"] = None
"""
description of the used precision, either one of fp16 or fp32 (and in the future bf16).
"""
num_layers: int = None
"""
Number of transformer layers.
"""
hidden_size: int = None
"""
Transformer hidden size.
"""
intermediate_size: int = None
"""
Transformer intermediate size. Default = 4h
"""
mlp_multiple_of: int = 1
"""
force mlp size to be a multiple of this value
"""
expansion_factor: float = None
"""
Transformer intermediate size. Default = 4
"""
num_attention_heads: int = None
"""
Number of transformer attention heads.
If num_kv_heads is set, will control only number of query heads.
"""
num_kv_heads: int = None
"""
Number of transformer key/value attention heads.
If set to None or the same value as num_attention_heads, will perform multi-head attention (MHA).
If set to < num_attention_heads but > 1, will perform grouped-query attention (GQA) (https://arxiv.org/pdf/2305.13245.pdf)
If set to 1, will perform multi-query attention.
Must be < num_attention_heads and divide num_attention_heads evenly.
"""
seq_length: int = None
"""
Maximum sequence length to process.
"""
sliding_window_width: int = None
"""
Width of the attention sliding window. Only supported with Flash Attention 2.
"""
max_position_embeddings: int = None
"""
Maximum number of position embeddings to use. This is the size of position embedding.
"""
norm: Literal[
"layernorm", "rmsnorm", "scalenorm", "te_rmsnorm", "te_layernorm"
] = "layernorm"
"""
Normalization layer to use. Choose from "layernorm", "rmsnorm", "scalenorm", "te_rmsnorm", "te_layernorm".
"""
layernorm_fusion: bool = False
"""
Use fused layer norm kernel (if `norm` is `layernorm`).
"""
rmsnorm_fusion: bool = False
"""
Use fused RMS norm kernel (if `norm` is `rmsnorm`).
"""
use_qk_layernorm: bool = False
"""
Use QK Normalization
"""
layernorm_epsilon: float = 1.0e-5
"""
Layer norm epsilon.
"""
rms_norm_epsilon: float = 1.0e-8
"""
Root mean squared norm epsilon
"""
scalenorm_epsilon: float = 1.0e-8
"""
Scalenorm epsilon
"""
pos_emb: Literal[
"learned", "rotary", "sinusoidal", "rpe", "alibi", "none"
] = "learned"
"""
Type of positional embedding to use - choose from 'learned', 'rotary', 'sinusoidal', 'rpe', 'none'
"""
rpe_num_buckets: int = 32
"""
T5 relative positional encoding number of buckets, default 32.
"""
rpe_max_distance: int = 128
"""
T5 relative positional encoding max distance, default 128.
"""
opt_pos_emb_offset: int = 0
"""
Learned position embedding offset (only used by OPT, where it should be set to 2).
"""
no_weight_tying: bool = False
"""
Disables weight tying between embedding weights and final Linear layer
"""
attention_config: list = None
"""
Attention configuration for gpt-neox
The first item in the list specifies the attention type(s), and should be a list of strings. The second item
specifies the number of times to repeat those attention types in the full list.
attention type choices: [global, local, sparse_fixed, sparse_variable, bslongformer, bigbird, "gmlp", "amlp", "flash", "mamba", "rwkv"]
So a 12 layer network with only global attention could be specified like:
[[[`global`], 12]]
or a 12 layer network with alternating global / local like:
[[[`global`, `local`], 6]]
If none is specified, this defaults to
[[[`global`], n_layers]]
"""
sparsity_config: dict = None
"""
Sparsity configuration dict as defined in https://www.deepspeed.ai/docs/config-json/#sparse-attention
Note that since neox is autoregressive, attention is always "unidirectional" and `horizontal_global_attention` is
always false.
The main difference between our sparsity config and deepspeed's is that `mode` is ignored - since it is instead
specified in attention_config defining each layer.
An example config is given below:
"sparse_attention": {
"block": 16,
"different_layout_per_head": true,
"num_local_blocks": 4,
"num_global_blocks": 1,
"num_different_global_patterns": 4,
"num_random_blocks": 0,
"local_window_blocks": [4],
"global_block_indices": [0],
"global_block_end_indices": None,
"num_sliding_window_blocks": 3
}
"""
num_unique_layers: int = None
"""
Number of unique transformer layers. num-layers should be divisible by this value. Currently only has an effect when pipe_parallel_size=0.
"""
param_sharing_style: str = "grouped"
"""
Ordering of the shared parameters. For example, for a num-layers=4 and --num-unique-layers=2, we will have the following ordering for two unique layers 1 and 2-: grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].
"""
make_vocab_size_divisible_by: int = 128
"""
Pad the vocab size to be divisible by this value. This is added for computational efficiency reasons.
"""
activation: Literal[
"gelu",
"geglu",
"relu",
"softsign",
"swish",
"mish",
"silu",
"reglu",
"swiglu",
"bilinear",
"glu",
] = "gelu"
"""
Activation function to use - choose from ["gelu", "geglu", "relu", "softsign", "swish", "mish", "silu", "reglu", "swiglu", "bilinear", "glu"]
"""
use_flashattn_swiglu: bool = False
"""
Use flash attention's version of swiglu
"""
scaled_upper_triang_masked_softmax_fusion: bool = False
"""
Enable fusion of query_key_value_scaling time (upper diagonal) masking and softmax.
"""
scaled_masked_softmax_fusion: bool = False
"""
Enable fusion of query_key_value_scaling general masking and softmax.
"""
bias_gelu_fusion: bool = False
"""
Enable bias and gelu fusion.
"""
bias_dropout_fusion: bool = False
"""
Enable bias and dropout fusion.
"""
rope_fusion: bool = False
"""
Enable rotary embedding fusion.
"""
fp16_lm_cross_entropy: bool = False
"""
Move the cross entropy unreduced loss calculation for lm head to fp16.
"""
init_method_std: float = 0.02
"""
Standard deviation of the zero mean normal distribution used for weight initialization.
"""
apply_query_key_layer_scaling: bool = False
"""
Scale Q * K^T by 1 / layer-number. If this flag is set, then it will automatically set attention-softmax-in-fp32 to true
"""
use_cpu_initialization: bool = False
"""
If set, affine parallel weights initialization uses CPU
"""
attention_softmax_in_fp32: bool = False
"""
Run attention masking and softmax in fp32.
"""
rotary_pct: float = 1.0
"""
pct of hidden dims to apply rotary positional embedding to
"""
rotary_emb_base: int = 10000
"""
Base for rotary positional embedding
"""
rotary_save_freqs_buffer: bool = False
"""
Used to control whether the `inv_freqs` buffer in rotary embeddings
will be stored in checkpoints (persistent=True) or not.
Defaults to false, but is left configurable to maintain backward-compatibility
with GPT-NeoX checkpoints that were trained with this flag.
"""
init_method: Literal[
"normal",
"scaled_normal",
"orthogonal",
"scaled_orthogonal",
"xavier_uniform",
"xavier_normal",
"wang_init",
"small_init",
"single_residual_scaled_normal",
] = "normal"
"""
Init function used on all layers except ff residual outputs - choose from
["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]
"""
output_layer_init_method: Literal[
"normal",
"scaled_normal",
"orthogonal",
"scaled_orthogonal",
"xavier_uniform",
"xavier_normal",
"wang_init",
"small_init",
"single_residual_scaled_normal",
] = "scaled_normal"
"""
Init function used for ff residual outputs - choose from
["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]
"""
gmlp_attn_dim: int = 64
"""
the dimension of the single head self attention in gmlp model (not used in gpt models).
If None - gmlp model doesn't use attention.
"""
gpt_j_residual: bool = False
"""
If false, we use the conventional residual path:
x = x + attn(ln1(x))
x = x + mlp(ln2(x))
Otherwise, we use the residual path from GPT-J, which offers a slight speedup:
x = ln(x)
x = x + attn(x) + mlp(x)
"""
gpt_j_tied: bool = False
"""
If false, we use
x = x + attn(ln1(x)) + mlp(ln2(x))
Otherwise, we tie the layer norms
y = ln(x)
x = x + attn(y) + mlp(y)
"""
use_bias_in_norms: bool = True
"""
If false, norms (e.g. LayerNorm) will not have bias terms
"""
use_bias_in_attn_linear: bool = True
"""
If false, attn_linear (e.g. QKVO) will not have bias terms
"""
use_bias_in_mlp: bool = True
"""
If false, mlps will not have bias terms
"""
soft_prompt_tuning: dict = None
"""
Dictionary configuring the soft prompt tuning parameters.
If enabled, will train *only* the soft prompt, and freezes the rest of the model.
parameters in the dict are:
'enabled': bool = True # enables soft prompting
'num_tokens': int = 10 # length of the soft prompt in tokens
'init_string': str = '' # if provided, initialize the soft prompt with the word embeddings of this string
'init_range': float = 0.5 # if no init string is provided, initialize the soft prompt with a uniform distribution between -init_range and init_rang
"""
mamba_selective_scan_fusion: bool = False
"""
Enable fused kernels for Mamba selective scan.
"""
mamba_causal_conv_fusion: bool = False
"""
Enable fused kernels for Mamba causal Conv1d.
"""
mamba_inner_func_fusion: bool = False
"""
Enable fused inner operator for Mamba. (Supersedes conv. and selective scan fusion flags, requires each of those kernels to be installed.)
"""
mamba_selective_fp32_params: bool = True
"""
Keep selected parameters in fp32 for Mamba (A and D).
Requires https://github.com/EleutherAI/DeeperSpeed/pull/61 .
"""
mamba_use_bias_in_conv: bool = True
"""
If false, conv1d in mamba block will not have bias term
"""
mamba_use_bias_in_linears: bool = False
"""
Enable bias terms in mamba block up- and down- projections (in_proj and out_proj).
"""
# Output layer parallelism over the hidden dim is currently broken (https://github.com/EleutherAI/gpt-neox/issues/905)
output_layer_parallelism: Literal["column"] = "column"
"""
Parameter controlling whether the output layer is parallelized over the hidden dim (row) or the vocab dim (column)
"""
dim_att: int = None
"""
Total dimension of the attention mechanism for RWKV. If not set, defaults to hidden_size.
"""
head_size: int = None
"""
Size of each attention head for RWKV. Calculated as dim_att // num_attention_heads.
"""
ffn_dim: int = None
"""
Dimension of the feed-forward network for RWKV. If not set, calculated based on hidden_size and expansion_factor.
"""
@dataclass
class NeoXArgsOptimizer(NeoXArgsTemplate):
"""
Optimizer Arguments
"""
optimizer_type: Literal[
"adam",
"onebitadam",
"cpu_adam",
"cpu_torch_adam",
"sm3",
"madgrad_wd",
"sgd",
"lion",
] = "adam"
"""
Type of optimizer to use. Choose from ['adam', 'onebitadam', 'cpu_adam', 'cpu_torch_adam', 'sm3', 'madgrad_wd', 'sgd', 'lion']
NOTE: sgd will use MuSGD from Mup. Mup must be enabled for this optimizer.
"""
use_bnb_optimizer: bool = False
"""
Whether to enable the bitsandbytes optimizers
"""
zero_stage: Union[int, List[int], Literal["all"]] = None
"""
Zero Optimizer stage
"""
zero_reduce_scatter: bool = None
"""
Zero: Uses reduce or reduce scatter instead of allreduce to average gradients
"""
zero_contiguous_gradients: bool = None
"""
Zero: Copies the gradients to a contiguous buffer as they are produced. Avoids memory fragmentation during backward pass. Only useful when running very large models.
"""
zero_reduce_bucket_size: int = None
"""
Zero: Number of elements reduced/allreduced at a time. Limits the memory required for the allgather for large model sizes
"""
zero_allgather_bucket_size: int = None
"""
Zero: Number of elements allgathered at a time. Limits the memory required for the allgather for large model sizes
"""
lr: float = None
"""
Max Learning rate during training
"""
@dataclass
class NeoXArgsLRScheduler(NeoXArgsTemplate):
"""
LR Scheduler Arguments
"""
lr_decay_style: Literal["constant", "linear", "cosine", "exponential"] = "linear"
"""
Learning rate decay function. Choose from 'constant', 'linear', 'cosine', 'exponential'.
"""
lr_decay_iters: int = None
"""
Number of iterations to decay learning rate over, If None defaults to
--train-iters or the equivalent inferred valued from train_epochs.
"""
lr_decay_fraction: float = None
"""
Effective fraction of training over which to decay lr, overrides lr_decay_iters, useful when specifying train_epochs
"""
min_lr: float = 0.0
"""
Minimum value for learning rate. The scheduler clips values below this threshold.
"""
warmup: float = 0.01
"""
Percentage of total iterations to warmup on (.01 = 1 percent of all training iters).
"""
override_lr_scheduler: bool = False
"""
Reset the values of the scheduler (learning rate,warmup iterations, minimum learning rate, maximum number of iterations, and decay style from input arguments and ignore values from checkpoints. Note that all the above values will be reset.
"""
use_checkpoint_lr_scheduler: bool = False
"""
Use checkpoint to set the values of the scheduler (learning rate, warmup iterations, minimum learning rate, maximum number of iterations, and decay style from checkpoint and ignore input arguments.
"""
@dataclass
class NeoXArgsLogging(NeoXArgsTemplate):
"""
Logging Arguments
"""
use_wandb: bool = None
"""Flag indicating if wandb is to be used."""
wandb_group: str = None
"""Weights and Biases group name - used to group together "runs"."""
wandb_team: str = None
"""Team name for Weights and Biases."""
wandb_project: str = "neox"
"""wandb project name"""
wandb_host: str = "https://api.wandb.ai"
"""url of the wandb host"""
wandb_init_all_ranks: bool = False
"""Initialize wandb on all ranks."""
git_hash: str = get_git_commit_hash()
"""current git hash of repository"""
log_dir: str = None
"""
Directory to save logs to.
"""
tensorboard_writer = None
"""
initialized tensorboard writer
"""
tensorboard_dir: str = None
"""
Write TensorBoard logs to this directory.
"""
use_comet: bool = None
"""Flag indicating if comet is to be used."""
comet_workspace: Optional[str] = None
"""
Comet workspace name, if not configured Comet Experiments will be created in the user configured default workspace.
"""
comet_project: Optional[str] = None
"""
Comet project name, if not configured Comet Experiments will be created in the Uncategorized Experiments project.
"""
comet_experiment_name: Optional[str] = None
"""
Custom name for the Comet experiment. If not provided, a random name is used.
"""
comet_tags: Optional[list] = None
"""
List of tags to attach to the created Comet Experiment.
"""
comet_others: Optional[dict] = None
"""
Custom metadata to attach to the created Comet Experiment.
"""
comet_experiment: Any = None
"""
Initialized comet experiment object used to log data
"""
log_interval: int = 100
"""
Interval between logging.
"""
log_grad_pct_zeros: bool = False
"""
Log the percentage of zeros for the gradient of each parameter to wandb / tensorboard (useful for debugging). Needs wandb_init_all_ranks set to True if using pipeline parallelism to log all ranks.
"""
log_param_norm: bool = False
"""
Log the frob norm of the parameters to wandb / tensorboard (useful for debugging). Needs wandb_init_all_ranks set to True if using pipeline parallelism to log all ranks.
"""
log_grad_norm: bool = False
"""
Log the frob norm of the gradients to wandb / tensorboard (useful for debugging).
(N.B - this will only work with pp = 0 for now, as we don't have access to the gradients of the model because
deepspeed.)
"""
log_optimizer_states: bool = False
"""
Log the frob norm of the optimizer states to wandb / tensorboard (useful for debugging).
"""
log_gradient_noise_scale: bool = False
"""
Whether to log the gradient noise scale when training (cf. https://arxiv.org/abs/1812.06162 for explanation)
"""
gradient_noise_scale_n_batches: int = 5
"""
Number of batches to accumulate gradients for in the gradient noise scale logger.
"""
gradient_noise_scale_cpu_offload: bool = False
"""
Whether to offload the buffered gradients to cpu when measuring gradient noise scale.
"""
memory_profiling: bool = False
"""
Whether to take a memory snapshot of the model. Useful for debugging memory issues.
"""
memory_profiling_path: str = None
"""
Path to save memory snapshot to.
"""
profile: bool = False
"""
Enable nsys and pytorch profiling. When using this option with nsys,
nsys options should be directly specified in commandline.
An example nsys commandline is
```
nsys profile -s none -t nvtx,cuda -o <path/to/output_file>
--force-overwrite true
--capture-range=cudaProfilerApi
--capture-range-end=stop
```
"""
profile_step_start: int = 10
"""
Step to start profiling at.
"""
profile_step_stop: int = 12
"""
Step to stop profiling at.
"""
@dataclass
class NeoXArgsOther(NeoXArgsTemplate):
"""
Misc. Arguments
"""
distributed_backend: str = "nccl"
"""
Which backend to use for distributed training.
"""
local_rank: int = None
"""
local rank passed from distributed launcher.
"""
rank: int = None
"""
global rank of process being run (passed in via distributed launcher)
"""
lazy_mpu_init: bool = False
"""
If set to True, initialize_megatron() skips DDP initialization and returns function to complete it instead. Also turns on use-cpu-initialization flag. This is for external DDP manager.
"""
short_seq_prob: float = 0.1
"""
Probability of producing a short sequence.
"""
eod_mask_loss: bool = False
"""
Mask loss for the end of document tokens.
"""
adlr_autoresume: bool = False
"""
Enable auto-resume on adlr cluster.
"""
adlr_autoresume_object = None
"""
imported autoresume
"""
adlr_autoresume_interval: int = 1000
"""
Intervals over which check for auto-resume termination signal
"""
seed: int = 1234
"""
Random seed used for python, numpy, pytorch, and cuda.
"""
onnx_safe: bool = False
"""
Use workarounds for known problems with Torch ONNX exporter
"""
deepscale: bool = False
"""
(Deprecated) enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)'
"""
deepscale_config: str = None
"""(Deprecated) deepscale json configuration file."""
deepspeed_mpi: bool = False
"""
Run via MPI, this will attempt to discover the necessary variables to initialize torch distributed from the MPI environment
"""
deepspeed_slurm: bool = False
"""
Run via SLURM, this will attempt to discover the necessary variables to initialize torch distributed from the SLURM environment
"""
user_script: str = None
"""
user script to be run
"""
iteration: int = None
"""
Set during training
"""
do_train: bool = None
"""
Set during training
"""
do_valid: bool = None
"""
Set during training
"""
do_test: bool = None
"""
Set during training
"""
global_num_gpus: int = None
"""
Set during launching
"""
@dataclass
class NeoXArgsTokenizer(NeoXArgsTemplate):
"""
Tokenizer Arguments
"""
tokenizer_type: Literal[
"GPT2BPETokenizer",
"HFTokenizer",
"HFGPT2Tokenizer",
"SPMTokenizer",
"CharLevelTokenizer",
"TiktokenTokenizer",
] = "GPT2BPETokenizer"
"""
Type of tokenizer to use - should be one of ["GPT2BPETokenizer", "HFTokenizer", "HFGPT2Tokenizer", "SPMTokenizer", "CharLevelTokenizer", "TiktokenTokenizer"]
"""
padded_vocab_size: int = None
"""
Total (padded) vocabulary size of tokenizer. Configured after launching of training,
as it's dependent on the parallelism size.
"""
tokenizer = None
"""
tokenizer object loaded into memory and accessible by other functions
"""
@dataclass
class NeoXArgsTraining(NeoXArgsTemplate):
"""
Training Arguments
"""
data_path: str = None
"""
Path to combined dataset to split.
"""
use_shared_fs: bool = True
"""
Whether to use a shared filesystem for data loading. If False, local rank 0 on all nodes will preprocess the data,
otherwise only global rank 0 will preprocess the data. This is implemented in megatron/data/gpt2_dataset.py::_build_index_mappings.
"""
train_data_paths: list = None
"""
List of paths to train datasets.
"""
train_label_data_paths: list = None
"""
List of paths to train label datasets (not shifted by 1 yet!).
"""
train_reward_data_paths: list = None
"""
List of paths to train reward datasets
"""
test_data_paths: list = None
"""
List of paths to test datasets.
"""
test_label_data_paths: list = None
"""
List of paths to test label datasets (not shifted by 1 yet!).
"""
test_reward_data_paths: list = None
"""
List of paths to test reward datasets
"""
valid_data_paths: list = None
"""
List of paths to validation datasets.
"""
valid_label_data_paths: list = None
"""
List of paths to validation label datasets (not shifted by 1 yet!).
"""
valid_reward_data_paths: list = None
"""
List of paths to validation reward datasets
"""
pos_train_data_paths: list = None
neg_train_data_paths: list = None
"""
List of paths to positive and negative training datasets.
"""
pos_train_label_data_paths: list = None
neg_train_label_data_paths: list = None
"""
List of paths to positive and negative training label datasets (not shifted by 1 yet!).
"""
pos_valid_data_paths: list = None
neg_valid_data_paths: list = None
"""
List of paths to positive and negative validation datasets.
"""
pos_valid_label_data_paths: list = None
neg_valid_label_data_paths: list = None
"""
List of paths to positive and negative validation label datasets (not shifted by 1 yet!).
"""
pos_test_data_paths: list = None
neg_test_data_paths: list = None
"""
List of paths to positive and negative test datasets.
"""
pos_test_label_data_paths: list = None
neg_test_label_data_paths: list = None
"""
List of paths to positive and negative test label datasets (not shifted by 1 yet!).
"""
train_data_weights: list = None
"""
List of 'weights' that decide how often to sample from each training dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `train_data_paths`
"""
valid_data_weights: list = None
"""
List of 'weights' that decide how often to sample from each validation dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `valid_data_paths`
"""
test_data_weights: list = None
"""
List of 'weights' that decide how often to sample from each test dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `test_data_paths`
"""
weight_by_num_documents: bool = False
"""
If True, Builds dataset weights from a multinomial distribution over groups of data according to the number of
documents in each group.
WARNING: setting this to True will override any user provided weights
We sample from a group according to the probability p(L) ∝ |L| ** α,
where p(L) is the probability of sampling from a given group,
|L| is the number of examples in that datapoint,
and α is a coefficient that acts to upsample data from underrepresented groups
Hence α (`alpha`) allows us to control how much to 'boost' the probability of training on low-resource groups.
See https://arxiv.org/abs/1911.02116 for more details
"""
weighted_sampler_alpha: float = 1.0
"""
Alpha value for `weight_by_num_documents`. Only has an effect if `weight_by_num_documents` = True.
when alpha = 1, the probability of sampling from a given group = n_samples / total_samples
as alpha -> 0, the probability of sampling from all groups becomes equal, and number of documents has no effect
as alpha -> inf, the probability of sampling from the groups with *the most samples* -> 1
"""
data_impl: Literal["infer", "mmap", "cached"] = "infer"
"""
Implementation of indexed datasets, can be one of "infer", "cached", or "mmap"
"""
pack_impl: Literal["packed", "pack_until_overflow", "unpacked"] = "packed"
"""
Packing implementation, can be one of "packed", "pack_until_overflow", or "unpacked".
warning: pack_until_overflow is very naive and will likely have issues with pretraining scale datasets
"""
dataset_impl: Literal["gpt2", "pairwise"] = "gpt2"
"""
Dataset implementation, can be one of "gpt2" or "pairwise"
"""
train_impl: Literal["normal", "dpo", "rm", "kto"] = "normal"
"""
Training implementation, can be one of "normal", "dpo", "kto", or "rm"
"""
dpo_fp32: bool = True
"""
Whether to cast logits to fp32 for DPO loss calculation.
"""
dpo_reference_free: bool = False
"""
Whether to use reference-free DPO.
"""
dpo_beta: float = 0.1
"""
Beta value for DPO
"""
kto_fp32: bool = True
"""
Whether to cast logits to fp32 for KTO loss calculation.
"""
kto_desirable_weight: float = 1.0
"""
Weight for desirable loss in KTO. Might help if you have unbalanced desirable and undesirable classes.
"""
kto_undesirable_weight: float = 1.0
"""
Weight for undesirable loss in KTO. Might help if you have unbalanced desirable and undesirable classes.
"""
z_loss: float = 0.0
"""
Z-loss parameter, only implemented for RM training currently.
https://arxiv.org/pdf/2204.02311
https://arxiv.org/pdf/2309.10305
"""
kto_beta: float = 0.1
"""
Beta value for KTO
"""
allow_chopped: bool = True
"""
WARNING: if your packing impl is packed, this is ignored.
Allow chopped samples in the dataset.
(e.g if your sequence length is 1024 and you have a sample of length 1026, it will be chopped to 1024)
"""
mmap_warmup: bool = False
"""
Warm up mmap files.
"""
save: str = None
"""
Output directory to save checkpoints to.
"""
s3_path: str = None
"""
Path to s3 bucket for saving checkpoints.
"""
s3_chunk_size: int = 104_857_600
"""
The number of bytes in each file chunk when uploading to s3. Defaults to 100MiB.
"""
config_files: dict = None
"""
Store of original config files mapping config filename to file contents
"""
load: str = None
"""
Directory containing a model checkpoint.
"""
checkpoint_validation_with_forward_pass: bool = False
"""
save input and output of a forward pass with the checkpoint and validate after load
"""
checkpoint_scale: Literal["linear", "log"] = "linear"
"""
How step at which checkpoints are saved should scale. "linear" implies 1 checkpoint will be saved at every multiple of `checkpoint-factor`,
while "log" implies that the number of steps between each checkpoint will be multiplied by `checkpoint-factor` at each step, starting from step 1.
"""
checkpoint_factor: Union[int, float] = None
"""
Acts as a multiplier on either the "log" or "linear" checkpoint spacing.
With `checkpoint-scale="linear"`, `checkpoint-factor=20`, and `train-iters=100`, checkpoints will be saved at
steps [20, 40, 60, 80, 100].
With `checkpoint-scale="log"`, `checkpoint-factor=2`, and `train-iters=100`, checkpoints will be saved at
steps [1, 2, 4, 8, 16, 32, 64, 100].
Note that the last checkpoint step is always saved.
"""
extra_save_iters: list = None
"""
Additional iterations when a checkpoint should be saved.
Must be a list of ints or `None`.
"""
no_save_optim: bool = False
"""
Do not save current optimizer.
"""
no_save_rng: bool = False
"""
Do not save current rng state.
"""
no_load_optim: bool = False
"""
Do not load optimizer when loading checkpoint.
"""
no_load_rng: bool = False
"""
Do not load rng state when loading checkpoint.
"""
finetune: bool = False
"""
Load model for finetuning. Do not load optimizer or rng state from checkpoint and set iteration to 0. Assumed when loading a release checkpoint.
"""
batch_size: int = None
"""
training microbatch size per gpu
"""
train_iters: int = None
"""
Number of iterations to run for training.
"""
train_epochs: int = None
"""
Number of epochs to run for training. Do not specify both train_epochs and train_iters.
Not currently compatible with data reweighing, pairwise datasets, and packing other than 'packed'
"""
eval_iters: int = 100
"""
Number of iterations to run for evaluation validation/test for.
"""
keep_last_n_checkpoints: int = None
"""
Number of last checkpoints to keep
"""
eval_interval: int = 1000
"""
Interval between running evaluation on validation set.
"""
split: str = "969, 30, 1"
"""
Comma_separated list of proportions for training, validation, and test split. For example the split 90,5,5 will use 90% of data for training, 5% for validation and 5% for test.
"""
vocab_file: str = None
"""
Path to the vocab file.
"""
merge_file: str = None
"""
Path to the BPE merge file.
"""
num_workers: int = 2
"""
Dataloader number of workers.
"""
exit_interval: int = None
"""
Exit the program after the iteration is divisible by this value.
"""
attention_dropout: float = 0.0
"""
Post attention dropout probability.
"""
hidden_dropout: float = 0.0
"""
Dropout probability for hidden state transformer.
"""
weight_decay: float = 0.1
"""
Weight decay coefficient for L2 regularization.
"""
checkpoint_activations: bool = False
"""
Checkpoint activation to allow for training with larger models, sequences, and batch sizes.
"""
checkpoint_num_layers: int = 1
"""
Chunk size (number of layers) for checkpointing.
"""
deepspeed_activation_checkpointing: bool = True
"""
DEPRECATED - TODO: remove
Uses activation checkpointing from deepspeed
"""
contiguous_checkpointing: bool = False
"""
Contiguous memory checkpointing for activations.
"""
checkpoint_in_cpu: bool = False
"""
Move the activation checkpoints to CPU.
"""
synchronize_each_layer: bool = False
"""
does a synchronize at the beginning and end of each checkpointed layer.
"""
profile_backward: bool = False
"""
Enables backward pass profiling for checkpointed layers.
"""
partition_activations: bool = False
"""
Partition Activations across GPUs before checkpointing.
"""
clip_grad: float = 1.0
"""
Gradient clipping based on global L2 norm.
"""
hysteresis: int = 2
"""
hysteresis for dynamic loss scaling
"""
dynamic_loss_scale: bool = None
"""
flag indicating whether dynamic loss scale is used
"""
loss_scale: float = None
"""
Static loss scaling, positive power of 2
values can improve fp16 convergence. If None, dynamic loss scaling is used.
"""
loss_scale_window: float = 1000.0
"""
Window over which to raise/lower dynamic scale.
"""
min_scale: float = 1.0
"""
Minimum loss scale for dynamic loss scale.
"""
char_level_ppl: bool = False
"""
Whether to calculate character level perplexity as well as token level perplexity. (may incur a time cost)
"""
use_mup: bool = False
"""
Whether to use Microsoft's Mup https://github.com/microsoft/mup
"""
coord_check: bool = False
"""
Whether to generate a "coord check" plot to verify mup's implementation in neox
"""
save_base_shapes: bool = False
"""
Whether to save base shapes for mup. This will save the shapes to the path specified in base-shapes-file.
"""
base_shapes_file: str = None
"""
Path to the base shapes to save to/load from
"""
mup_init_scale: float = 1.0
"""
Initialization scale: All the parameters are multiplied by this value
"""
mup_attn_temp: float = 1.0
"""
Attention temperature: Reciprocal of the multiplier applied to the input to attention softmax
"""
mup_output_temp: float = 1.0
"""
Output temperature: Reciprocal of the multiplier applied to the input to softmax that
produces the distribution over output tokens.
"""
mup_embedding_mult: float = 1.0
"""
Scalar by which we multiply the output of the embedding layer
"""
mup_rp_embedding_mult: float = 1.0
"""
Scalar by which we multiply vectors representing relative position
"""
mup_width_scale: int = 2
"""
What to scale width by when creating the delta model for mup
"""
@dataclass
class NeoXArgsTextgen(NeoXArgsTemplate):
"""
Text Generation arguments
"""
text_gen_type: str = None
"""
How to generate text/sample the model.
Options: `unconditional`, `input-file`, `interactive`, `precompute`
"""
precompute_model_name: str = None
"""
Model name to use for saving precomputed logprobs
"""
temperature: float = 0.0
"""
exponential scaling output distribution ("higher == more risk")
"""
top_p: float = 0.0
"""
Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p.
"""
top_k: int = 0
"""
integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token.
"""
return_logits: bool = False
"""
Boolean for whether to return the logits for generated tokens
"""
maximum_tokens: int = 64
"""
maximum number of tokens to be generated
"""
prompt_end: str = "\n"
"""
a single prompt's end. Defaults to newline
"""
sample_input_file: str = None
"""
Get input from file instead of interactive mode, each line is an input.
"""
sample_output_file: str = "samples.txt"
"""
Output file
"""
num_samples: int = 1
"""
Number of samples to generate unconditionally, defaults to 1 and interactive conditional sampling
"""
recompute: bool = False
"""
During generation recompute all attention instead of using previously computed keys/values.
Should be set to true for sparse attention models
"""
eval_results_prefix: str = ""
"""
prefix to which to save evaluation results - final fp will be {eval_results_prefix}_eval_results_yy-mm-dd-HH-MM.json
"""
eval_tasks: list = None
"""
Tasks to evaluate on using lm_eval_harness
NOTE: Requires internet connection
"""
moe_top_k: int = 1
"""
Activate top K experts in MoE
"""
use_tutel: bool = False
"""
Use Tutel optimizations in MoE
"""
moe_num_experts: int = 1
"""
Number of MoE experts
"""
moe_loss_coeff: float = 0.1
"""
Coefficient for MoE loss
"""
moe_train_capacity_factor: float = 1.0
"""
The capacity of the expert at train time
"""
moe_eval_capacity_factor: float = 1.0
"""
The capacity of the expert at eval time
"""
moe_min_capacity: int = 4
"""
The minimum capacity per expert regardless of the capacity_factor
"""
moe_token_dropping: bool = False
"""
Whether to drop tokens when exceeding capacity
"""
create_moe_param_group: bool = True
"""
Whether to create a separate parameter group for MoE parameters
"""
moe_use_residual: bool = True
"""
Whether to use residual in MoE
"""
moe_expert_parallel_size: int = 1
"""
Number of parallel experts in MoE
"""
moe_type: str = "megablocks"
"""
Either `deepspeed` or `megablocks`
"""
moe_glu: bool = False
"""
Use gated linear units in MoE
"""
moe_lbl_in_fp32: bool = False
"""
Whether to compute the load balancing loss in fp32.
"""
moe_jitter_eps: float = None
"""
Coefficient for MoE routing jitter. Jitter is
not used if set to None
"""
enable_expert_tensor_parallelism: bool = False
"""
Enable expert tensor parallelism
"""
|