File size: 58,214 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import base64
import os
from pathlib import Path
import yaml
import json
import logging
import copy
import torch
import argparse
from pkg_resources import packaging
from importlib.metadata import version

from dataclasses import dataclass
from typing import List, Dict
from socket import gethostname

try:
    from typing import Literal, Union
except ImportError:
    from typing_extensions import Literal, Union
from deepspeed.launcher.runner import DLTS_HOSTFILE
from megatron.logging import Tee
from megatron.tokenizer import build_tokenizer
from megatron.utils import obtain_resource_pool, expand_attention_types
from .deepspeed_args import NeoXArgsDeepspeedConfig, NeoXArgsDeepspeedRunner
from .neox_args import (
    NeoXArgsModel,
    NeoXArgsTokenizer,
    NeoXArgsTraining,
    NeoXArgsParallelism,
    NeoXArgsLogging,
    NeoXArgsOther,
    NeoXArgsTextgen,
    NeoXArgsOptimizer,
    NeoXArgsLRScheduler,
    ATTENTION_TYPE_CHOICES,
)

### Logging colors ###
GREEN = "\033[92m"
RED = "\033[91m"
YELLOW = "\033[93m"
END = "\033[0m"
SUCCESS = f"{GREEN} [SUCCESS] {END}"
OKAY = f"{GREEN}[OKAY]{END}"
WARNING = f"{YELLOW}[WARNING]{END}"
FAIL = f"{RED}[FAIL]{END}"
INFO = "[INFO]"

# ZERO defaults by deespeed
# These values should not be changed unless defaults in deepspeed are changed
# for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training
ZERO_DEFAULTS = {
    "stage": 0,
    "allgather_partitions": True,
    "reduce_scatter": True,
    "allgather_bucket_size": int(5e8),
    "overlap_comm": False,
    "reduce_scatter": True,
    "reduce_bucket_size": int(5e8),
    "contiguous_gradients": False,
}

# NeoX optimizer defaults
OPT_DEFAULT = "Adam"
OPT_PARAMS_DEFAULTS = {
    "lr": 0.001,
    "betas": [0.9, 0.999],
    "eps": 1.0e-8,
    "weight_decay": 0,
    "freeze_step": 400,
    "momentum": 0.0,
    "cuda_aware": False,
}


AUTOTUNING_ARGS = (
    "train_batch_size",
    "train_micro_batch_size_per_gpu",
    "gradient_accumulation_steps",
    "zero_optimization",
    "autotuning",
)

BASE_CLASSES = [
    NeoXArgsDeepspeedRunner,
    NeoXArgsDeepspeedConfig,
    NeoXArgsModel,
    NeoXArgsLRScheduler,
    NeoXArgsOptimizer,
    NeoXArgsTokenizer,
    NeoXArgsTraining,
    NeoXArgsParallelism,
    NeoXArgsLogging,
    NeoXArgsTextgen,
    NeoXArgsOther,
]

DEEPSPEED_ARG_CLASSES = [NeoXArgsDeepspeedRunner, NeoXArgsDeepspeedConfig]
NEOX_ARG_CLASSES = [i for i in BASE_CLASSES if i not in DEEPSPEED_ARG_CLASSES]

if "DLTS_HOSTFILE" in os.environ:
    DLTS_HOSTFILE = os.environ["DLTS_HOSTFILE"]


@dataclass
class NeoXArgs(*BASE_CLASSES):
    """
    data class containing all configurations

    NeoXArgs inherits from a number of small configuration classes
    """

    ############################################################################################################################
    # start of instantiation

    def __post_init__(self):
        """
        after initialization of default or loaded values
        a number of functions are performed in order to
        calculate values, assert consistency and do typechecking.
        """
        if not NeoXArgs.validate_keys():
            raise ValueError(
                self.__class__.__name__
                + ".__post_init__() NeoXArgs keys cannot be validated"
            )

        self.enable_logging()

        self.calculate_derived()

        if not self.validate_types():
            raise ValueError(
                self.__class__.__name__
                + ".__post_init__() NeoXArgs types cannot be validated"
            )

        if not self.validate_values():
            raise ValueError(
                self.__class__.__name__
                + ".__post_init__() NeoXArgs values cannot be validated"
            )

    def build_tokenizer(self):
        self.tokenizer = build_tokenizer(self)

    def initialize_tensorboard_writer(self):
        if self.tensorboard_dir and self.rank == 0:
            try:
                from torch.utils.tensorboard import SummaryWriter

                print("> setting up tensorboard ...")
                self.tensorboard_writer = SummaryWriter(log_dir=self.tensorboard_dir)
            except (ModuleNotFoundError, ImportError):
                print(
                    "WARNING: TensorBoard writing requested but is not "
                    "available (are you using PyTorch 1.1.0 or later and do you have tensorboard installed?), "
                    "no TensorBoard logs will be written.",
                    flush=True,
                )

    def initialize_comet(self):
        if self.use_comet and self.rank == 0:
            try:
                import comet_ml

                # Deactivate output logging to avoid any potential interference with Tee
                self.comet_experiment = comet_ml.start(
                    workspace=self.comet_workspace,
                    project=self.comet_project,
                    experiment_config=comet_ml.ExperimentConfig(
                        auto_output_logging=False
                    ),
                )
                self.comet_experiment.__internal_api__log_parameters__(
                    self.all_config,
                    framework="gpt-neox",
                    source="manual",
                    flatten_nested=True,
                )

                if self.comet_experiment_name:
                    self.comet_experiment.set_name(self.comet_experiment_name)

                if self.comet_tags:
                    self.comet_experiment.add_tags(self.comet_tags)

                if self.comet_others:
                    self.comet_experiment.log_others(self.comet_others)

                logging.info("> setting up comet ...")
            except ImportError as e:
                logging.error(
                    f'{FAIL} importing comet. Comet can be installed with "pip install comet_llm". See https://github.com/comet-ml/comet-llm for more info. Full error is:'
                )
                raise e
            except Exception as e:
                logging.error(
                    f'{FAIL} Error setting up Comet. Either set "use_comet: False" in your configuration file, or resolve the issue with Comet. Full error is:',
                )
                raise e

    @classmethod
    def from_ymls(cls, paths_to_yml_files: List[str], overwrite_values: Dict = None):
        """
        instantiates NeoXArgs while reading values from yml files

        paths_to_yml_files: list of paths to yml files

        overwrite_values: If provided, overwrite any values in the yamls with these values
        """

        print(cls.__name__ + ".from_ymls() " + str(paths_to_yml_files), flush=True)

        # initialize an empty config dictionary to be filled by yamls
        config = dict()
        config_files = dict()
        # iterate of all to be loaded yaml files
        for conf_file_name in paths_to_yml_files:
            # load file
            with open(conf_file_name) as conf_file:
                conf = yaml.load(conf_file, Loader=yaml.FullLoader)

            # check for key duplicates and load values
            for conf_key, conf_value in conf.items():
                if conf_key in config:
                    raise ValueError(
                        f"Conf file {conf_file_name} has the following duplicate keys with previously loaded file: {conf_key}"
                    )

                conf_key_converted = conf_key.replace(
                    "-", "_"
                )  # TODO remove replace and update configuration files?
                config[conf_key_converted] = conf_value

            # load original config files to save unchanged with checkpoint
            # saving the original config retains comments
            filename = os.path.basename(conf_file_name)
            assert (
                filename not in config_files
            ), "At least two config files have the same filename. This will result in conflicts when saving out configs with the checkpoint in one single directory. Please use unique names for configs."
            config_files[filename] = open(conf_file_name).read()

        # add config file content to neox args to make them accessible in code
        # this is used when saving checkpoints
        config["config_files"] = config_files

        # Configuration parameters not specified
        params_not_in_config = sorted(
            list(set(cls.__dataclass_fields__.keys()) - set(config.keys()))
        )
        if len(params_not_in_config) > 0:
            logging.debug(
                cls.__name__
                + ".from_ymls() Configuration parameters not specified (using defaults): "
                + ", ".join(params_not_in_config)
            )

        if overwrite_values is not None:
            for k, v in overwrite_values.items():
                config[k] = v

        # instantiate class and return
        # duplicate values and unrecognized keys are again checked upon instantiation
        return cls(**config)

    @classmethod
    def from_dict(cls, args_dict: Dict):
        """
        instantiates NeoXArgs while reading values from input dict
        """
        return cls(**args_dict)

    ############################################################################################################################
    # start of command line args interface

    @classmethod
    def consume_deepy_args(cls, input_args=None):
        """
        entry point for deepy.py configuring and consuming command line arguments.

        We can use `--wandb_group` / `--wandb_team` to overwrite those args from the command line, otherwise the value from the config is taken.
        """

        parser = argparse.ArgumentParser(
            description="GPT-NeoX Configuration", allow_abbrev=False
        )

        group = parser.add_argument_group(title="Training Configuration")

        group.add_argument(
            "user_script",
            type=str,
            help="User script to launch, followed by any required " "arguments.",
        )

        group.add_argument(
            "--conf_dir",
            "-d",
            type=str,
            default=None,
            help="Directory to prefix to all configuration file paths",
        )

        group.add_argument(
            "conf_file",
            type=str,
            nargs="+",
            help="Configuration file path. Multiple files can be provided and will be merged.",
        )

        group = parser.add_argument_group(title="Weights and Biases monitoring args")

        group.add_argument(
            "--wandb_group",
            type=str,
            default=None,
            help='Weights & Biases group name - used to group together "runs".',
        )
        group.add_argument(
            "--wandb_team",
            type=str,
            default=None,
            help="Weights & Biases team name.",
        )

        group = parser.add_argument_group(title="Eval args")

        group.add_argument(
            "--eval_tasks",
            type=str,
            nargs="+",
            default=None,
            help="Optionally overwrite eval tasks to run for eval.py",
        )
        group.add_argument(
            "--iteration",
            type=int,
            default=None,
            help="Iteration to load checkpoint from in the eval.py and generate.py scripts. If None is provided, uses the latest iteration.",
        )
        group.add_argument(
            "--eval_results_prefix",
            type=str,
            default=None,
            help="prefix to append to eval results file",
        )
        parser.add_argument(
            "-H",
            "--hostfile",
            type=str,
            help="Hostfile path (in MPI style) that defines the "
            "resource pool available to the job (e.g., "
            "worker-0 slots=4)",
        )
        group = parser.add_argument_group(title="Generation args")
        group.add_argument(
            "-i",
            "--sample_input_file",
            type=str,
            default=None,
            help="Optionally overwrite `sample_input_file` for generate.py",
        )
        group.add_argument(
            "-o",
            "--sample_output_file",
            type=str,
            default=None,
            help="Optionally overwrite `sample_output_file` for generate.py",
        )

        tuning = parser.add_argument_group(title="DeepSpeed Autotuning")
        tuning.add_argument(
            "--autotuning",
            type=str,
            default=None,
            choices=("tune", "run"),
            help="Use DeepSpeed's autotuning feature to optimize certain hyperparameters. For more details refer to documentation here: https://www.deepspeed.ai/tutorials/autotuning/",
        )
        args_parsed = parser.parse_args(input_args)

        # Validate user_script exists
        assert os.path.exists(
            args_parsed.user_script
        ), f"User script could not be found: {args_parsed.user_script}"

        # load config files
        conf_files = args_parsed.conf_file
        if args_parsed.conf_dir:
            conf_files = [os.path.join(args_parsed.conf_dir, f) for f in conf_files]

        # enables us to pass in `125M` instead of `125M.yml`
        conf_files = [
            (cf if (cf.endswith(".yml") or cf.endswith(".json")) else cf + ".yml")
            for cf in conf_files
        ]

        # determine overwrite values
        overwrite_values = dict()
        for k, v in vars(args_parsed).items():
            if k == "autotuning" and v is not None:
                overwrite_values["autotuning_run"] = v
            elif k not in ["conf_dir", "conf_file"] and v is not None:
                overwrite_values[k] = v

        # load args
        neox_args = cls.from_ymls(
            paths_to_yml_files=conf_files, overwrite_values=overwrite_values
        )

        if neox_args.use_wandb:
            try:
                import wandb

                # Check if the W&B group name is configured
                if neox_args.wandb_group is None:
                    # Set a randomized string as group name if no group name is provided
                    neox_args.wandb_group = wandb.sdk.lib.runid.generate_id()
                else:
                    # Concatenate the W&B group name with a randomized string to ensure uniqueness.
                    neox_args.wandb_group += "_" + wandb.sdk.lib.runid.generate_id()
            except ModuleNotFoundError as e:
                if e.name == "wandb":
                    e.msg += "\nWeights & Biases monitoring was requested but `wandb` was not found. Install `wandb` to use Weights & Biases, or set the `use_wandb` configuration option to a boolean false to disable Weights & Biases logging."
                raise e

            neox_args.wandb_group += "_" + wandb.util.generate_id()

        neox_args.print()

        return neox_args

    @classmethod
    def consume_neox_args(cls, overwrite_values=None, input_args=None):
        """
        Deepspeed launcher needs to pass the arguments for `pretrain_gpt2.py` across to all machines.

        In order not to have any problems with different configs being mismatched across machines, we instead read the .yaml configuration file from the main rank,
        then serialize the arguments to a dictionary, which the deepspeed launcher broadcasts to all machines (`--megatron_config`).

        We then instantiate a new NeoXArgs from the dictionary (`.from_dict`). This should ensure args are never inconsistent across machines.
        """

        parser = argparse.ArgumentParser(
            description="GPT-NeoX Configuration", allow_abbrev=False
        )
        parser.add_argument(
            "--megatron_config",
            type=str,
            default=None,
            help="json dict dumped as string in NeoXArgs.get_deepspeed_main_args()",
        )
        parser.add_argument(
            "--deepspeed_config",
            type=str,
            default=None,
            help="Only need this (at this stage) for autotuning",
        )
        args_parsed, _ = parser.parse_known_args(input_args)
        megatron_config = json.loads(
            base64.urlsafe_b64decode(args_parsed.megatron_config).decode("utf-8")
        )
        if args_parsed.deepspeed_config is not None:
            overwrite_values = cls.set_up_autotuning(
                args_parsed.deepspeed_config, overwrite_values
            )
        if overwrite_values is not None:
            megatron_config.update(overwrite_values)
        return cls.from_dict(args_dict=megatron_config)

    @staticmethod
    def set_up_autotuning(encoded_config, overwrite_values):
        config = json.loads(base64.urlsafe_b64decode(encoded_config).decode("utf-8"))
        overwrite_values = overwrite_values if overwrite_values else {}
        for tuning_param in AUTOTUNING_ARGS:
            # TODO: This is for autotuning specifically, may cause surprises for someone with a weird setup
            if tuning_param in config:
                overwrite_values[tuning_param] = config[tuning_param]
        return overwrite_values

    @staticmethod
    def convert_key_value_to_command_line_arg(k, v):
        if isinstance(v, bool):
            if v:
                return [f"--{k}"]
            else:
                return []
        if v is None:
            return []
        return [f"--{k}", str(v)]

    def get_extra_deepspeed_args(self):
        """
        Sets up the extra arguments for deepspeed. This is done by reading in the `deepspeed_extra_args` dictionary from
            the configuration file, and then adding any arguments where values differ from those specified in the dataclass.
        """
        neox_args = self.get_parent_class_value_dict(
            *self.__class__.__bases__, only_non_defaults=True
        )

        extra_ds_args = dict()

        for key, value in self.deepspeed_extra_args.items():
            # Check to make sure the key is not already changed from defaults, and raise an exception if it is
            # This is to prevent users from accidentally writing arguments both in deepspeed_extra_args and in the base level
            # of the configuration file
            if hasattr(neox_args, key):
                raise ValueError(
                    f"Key {key} is already specified elsewhere. Reading in a different value from the 'deepspeed_extra_args' option in the configuration file will cause undefined behavior."
                )
            extra_ds_args[key] = value

        return extra_ds_args

    def get_deepspeed_main_args(self):
        args_list = list()

        if self.autotuning_run is not None:
            args_list.extend(
                self.convert_key_value_to_command_line_arg(
                    "autotuning", self.autotuning_run
                )
            )

        # get deepspeed runner args, and only pass them in to deepspeed launcher if they differ from defaults
        for key, default_value in NeoXArgsDeepspeedRunner().defaults():
            if key == "autotuning_run":
                continue
            configured_value = getattr(self, key)

            if key == "force_multi":
                if self.deepspeed_slurm or self.deepspeed_mpi:
                    configured_value = True
            if configured_value != default_value:
                args_list.extend(
                    self.convert_key_value_to_command_line_arg(key, configured_value)
                )

        if self.deepspeed_slurm:
            comment = getattr(self, "comment")
            if comment:
                args_list.extend(
                    self.convert_key_value_to_command_line_arg("comment", comment)
                )
            account = getattr(self, "account")
            if account:
                args_list.extend(
                    self.convert_key_value_to_command_line_arg("account", account)
                )

            # master_address = os.environ['SLURM_JOB_NODELIST'].split('\n')[0]
            # args_list.extend(
            #    self.convert_key_value_to_command_line_arg('master_addr', master_address)
            # )

        if "DLTS_HOSTFILE" in os.environ:
            args_list.extend(
                self.convert_key_value_to_command_line_arg(
                    "hostfile", os.environ["DLTS_HOSTFILE"]
                )
            )

        if "MASTER_ADDR" in os.environ:
            args_list.extend(
                self.convert_key_value_to_command_line_arg(
                    "master_addr", os.environ["MASTER_ADDR"]
                )
            )

        if (
            "--include" in args_list or "--exclude" in args_list
        ) and "--num_gpus" in args_list:
            print(
                "WARNING: both --include/--exclude and num_gpus were specified simultaneously - overriding num_gpus with --include/--exclude"
            )
            # cannot specify these both simultaneously, remove num_gpus from list
            idx = args_list.index("--num_gpus")
            # pop twice, once for the arg, once for its value
            args_list.pop(idx)
            args_list.pop(idx)

        # add user script
        args_list.append(self.user_script)

        self.configure_distributed_args()
        cwd = Path.cwd()

        # get deepspeed_config
        args_list.append("--deepspeed_config")

        if self.autotuning_run is not None:
            ds_fp = cwd / Path("ds_config.json")
            if self.rank == 0:
                with open(ds_fp, mode="w") as ds_file:
                    json.dump(self.deepspeed_config, ds_file)
            args_list.append(str(ds_fp))
        else:
            encoded_ds_config = base64.urlsafe_b64encode(
                json.dumps(self.deepspeed_config).encode("utf-8")
            ).decode("utf-8")
            args_list.append(encoded_ds_config)

        # get all config values
        args_list.append("--megatron_config")
        neox_args = self.get_parent_class_value_dict(
            *self.__class__.__bases__, only_non_defaults=True
        )
        encoded_mega_config = base64.urlsafe_b64encode(
            json.dumps(neox_args).encode("utf-8")
        ).decode("utf-8")
        args_list.append(str(encoded_mega_config))
        return args_list

    ############################################################################################################################
    # start of calculated properties

    @property
    def deepspeed_config(self) -> dict:
        """
        returns a dict containing variables within deepspeed config
        """
        config = self.get_parent_class_value_dict_extra_ds(
            NeoXArgsDeepspeedConfig, only_non_defaults=True
        )
        return config

    @property
    def deepspeed_runner(self) -> dict:
        """
        returns variables within deepspeed runner
        """
        return self.get_parent_class_value_dict(NeoXArgsDeepspeedRunner)

    @property
    def megatron_config(self) -> dict:
        """
        returns variables within megatron args
        """
        return self.get_parent_class_value_dict(*NEOX_ARG_CLASSES)

    @property
    def all_config(self) -> dict:
        """
        returns variables of all args
        """
        return self.get_parent_class_value_dict(*BASE_CLASSES)

    def get_parent_class_value_dict(
        self, *parent_classes, only_non_defaults=False
    ) -> dict:
        """
        takes a sequence of parent classes and returns corresponding values (with defaults set)
        """
        # TODO no Nones or non-defaults
        result = dict()
        for parent in parent_classes:
            for key, default_value in parent().defaults():
                if key in ["tokenizer", "tensorboard_writer", "adlr_autoresume_object"]:
                    continue
                if only_non_defaults:
                    value = getattr(self, key)
                    if value == default_value:
                        continue
                result[key] = getattr(self, key)
        return result

    def get_parent_class_value_dict_extra_ds(
        self, *parent_classes, only_non_defaults=False
    ) -> dict:
        """
        Takes a sequence of parent classes and returns corresponding values (with defaults set).
        Also adds in any extra deepspeed arguments that are specified in the configuration file.

        Args:
            parent_classes: sequence of parent classes
            only_non_defaults: if True, only returns values that differ from defaults

        Returns:
            dict of arguments and values

        """
        # TODO no Nones or non-defaults
        result = dict()
        for parent in parent_classes:
            for key, default_value in parent().defaults():
                if key in [
                    "tokenizer",
                    "tensorboard_writer",
                    "adlr_autoresume_object",
                    "deepspeed_extra_args",
                ]:
                    continue
                if only_non_defaults:
                    value = getattr(self, key)
                    if value == default_value:
                        continue
                result[key] = getattr(self, key)

        if self.deepspeed_extra_args is not None:
            extra_ds_args = self.get_extra_deepspeed_args()
            result.update(extra_ds_args)

        return result

    @property
    def params_dtype(self):
        """
        returns the datatype on the basis of configured precision
        """
        if self.precision == "fp16":
            return torch.half
        elif self.precision == "bfloat16":
            return torch.bfloat16
        else:
            return torch.float

    ############################################################################################################################
    # start of logging and output

    def enable_logging(self):
        """
        enable Tee logs based on the configured logdir
        """
        if self.log_dir:
            os.makedirs(self.log_dir, exist_ok=True)
            hostname = gethostname()
            file_prefix = os.path.join(self.log_dir, hostname)
            Tee(file_prefix + "_stdout.txt", err=False)
            Tee(file_prefix + "_stderr.txt", err=True)

    def print(self):
        """Print arguments."""
        if self.rank == 0 or self.rank is None:
            print("-------------------- arguments --------------------", flush=True)
            str_list = []
            for arg in vars(self):
                # add arg + value
                dots = "." * (32 - len(arg))
                value = getattr(self, arg)
                print_str = "  {} {} {}".format(arg, dots, value)

                # add info 'default or updated'
                field_def = self.__dataclass_fields__.get(arg)
                if field_def is not None:
                    default_info = (
                        "default" if value == field_def.default else "updated"
                    )
                else:
                    default_info = ""
                dots = "." * (64 - len(print_str))
                print_str += dots
                str_list.append({"print_str": print_str, "default_info": default_info})

            for arg in sorted(
                sorted(str_list, key=lambda x: x["print_str"].lower()),
                key=lambda x: x["default_info"],
                reverse=True,
            ):
                print(arg["print_str"] + arg["default_info"], flush=True)
            print("---------------- end of arguments ----------------", flush=True)

    ############################################################################################################################
    # start of calculations and derived values

    def configure_distributed_args(self):
        """
        Configures distributed training arguments from local variables set by deepspeed launcher.
        """
        if self.deepspeed_mpi:
            from deepspeed.comm import mpi_discovery

            mpi_discovery()

        if self.deepspeed_slurm:
            os.environ["LOCAL_RANK"] = os.environ["SLURM_LOCALID"]
            os.environ["RANK"] = os.environ["SLURM_PROCID"]
            os.environ["WORLD_SIZE"] = (
                os.environ["SLURM_NTASKS"]
                if os.environ.get("SLURM_NTASKS") is not None
                else str(
                    int(os.environ["SLURM_NNODES"])
                    * int(os.environ["SLURM_NTASKS_PER_NODE"])
                )
            )

        self.update_value("local_rank", int(os.getenv("LOCAL_RANK", "0")))
        self.update_value("rank", int(os.getenv("RANK", "0")))
        self.update_value("world_size", int(os.getenv("WORLD_SIZE", "1")))

        if self.rank == 0:
            print(
                self.__class__.__name__
                + ".configure_distributed_args() using world size: {} and model-parallel size: {} ".format(
                    self.world_size, self.model_parallel_size
                ),
                flush=True,
            )

    @staticmethod
    def calculate_batch_parameters(
        dp_world_size, train_batch=None, micro_batch=None, grad_acc=None
    ):
        # all values are provided nothing needs to be set
        if train_batch is not None and micro_batch is not None and grad_acc is not None:
            return train_batch, micro_batch, grad_acc

        # gradient_accumulation_steps needs to be set
        elif train_batch is not None and micro_batch is not None:
            grad_acc = train_batch // micro_batch
            grad_acc //= dp_world_size

        # micro_batch_per_gpu needs to be set
        elif train_batch is not None and grad_acc is not None:
            micro_batch = train_batch // dp_world_size
            micro_batch //= grad_acc

        # train_batch_size needs to be set
        elif micro_batch is not None and grad_acc is not None:
            train_batch = micro_batch * grad_acc
            train_batch *= dp_world_size

        # gradient_accumulation_steps and micro_batch_per_gpus is set
        elif train_batch is not None:
            grad_acc = 1
            micro_batch = train_batch // dp_world_size

        # train_batch_size and gradient_accumulation_step is set
        elif micro_batch is not None:
            train_batch = micro_batch * dp_world_size
            grad_acc = 1

        # either none of the three parameters are provided or just gradient_accumulation_step is provided
        else:
            assert (
                False
            ), "Either train_batch_size or train_micro_batch_size_per_gpu needs to be provided"
        return int(train_batch), int(micro_batch), int(grad_acc)

    @staticmethod
    def check_batch_parameters(dp_world_size, train_batch, micro_batch, grad_acc):
        assert (
            train_batch > 0
        ), f"Train batch size: {train_batch} has to be greater than 0"

        assert (
            micro_batch > 0
        ), f"Micro batch size per gpu: {micro_batch} has to be greater than 0"

        assert (
            grad_acc > 0
        ), f"Gradient accumulation steps: {grad_acc} has to be greater than 0"

        assert train_batch == micro_batch * grad_acc * dp_world_size, (
            f"Check batch related parameters. train_batch_size is not equal"
            " to micro_batch_per_gpu * gradient_acc_step * world_size \n"
            f"{train_batch} != {micro_batch} * {grad_acc} * {dp_world_size}"
        )

    def calculate_derived(self):
        """
        Derives additional configuration values necessary for training from the current config
        """

        # number of gpus
        # Get number of GPUs param or hostfile to determine train_batch_size
        global_num_gpus = getattr(self, "global_num_gpus", None)
        if global_num_gpus is None:
            if self.hostfile is not None or os.path.exists(DLTS_HOSTFILE):
                hostfile_path = self.hostfile or DLTS_HOSTFILE
                resources = obtain_resource_pool(
                    hostfile_path, self.include or "", self.exclude or ""
                )
                if self.num_nodes is not None and self.num_nodes > 0:
                    resources = {
                        k: resources[k]
                        for k in list(resources.keys())[: self.num_nodes]
                    }
                global_num_gpus = sum(map(len, resources.values()))
                if self.num_gpus is not None and self.num_gpus > 0:
                    global_num_gpus = self.num_gpus * len(resources)
            else:
                global_num_gpus = torch.cuda.device_count()
            self.update_value("global_num_gpus", global_num_gpus)

        logging.info(
            self.__class__.__name__
            + ".calculate_derived() "
            + f"Total number of GPUs determined to be: {global_num_gpus}"
        )

        # get world size in the model/pipe parallel case, the actual `world size` deepspeed uses is the size of the
        # data-parallel group, or (num_gpus / mp_size) / pp_size
        pp_size = self.pipe_parallel_size
        pp_size = pp_size if pp_size >= 1 else 1
        mp_size = self.model_parallel_size
        mp_size = mp_size if mp_size >= 1 else 1
        self.update_value("model_parallel_size", mp_size)

        # pp_size and mp_size are only used here to compute dp world size and nowhere else.
        dp_world_size = (global_num_gpus / pp_size) / mp_size
        if not (dp_world_size % 1 == 0):
            error_message = (
                f"{ERROR}"
                + self.__class__.__name__
                + ".calculate_derived() "
                + f"(global_num_gpus / pp_size) / mp_size [({global_num_gpus} / {pp_size}) / {mp_size}] must be a whole number"
            )
            logging.error(error_message)
            raise AssertionError(error_message)

            # Automatically derive train_batch_size = train_micro_batch_size_per_gpu*global_num_gpus*gradient_accumulation_steps
        (
            train_batch_size,
            train_micro_batch_size_per_gpu,
            gradient_accumulation_steps,
        ) = self.calculate_batch_parameters(
            dp_world_size=dp_world_size,
            train_batch=self.train_batch_size,
            micro_batch=self.train_micro_batch_size_per_gpu,
            grad_acc=self.gradient_accumulation_steps,
        )
        self.check_batch_parameters(
            dp_world_size=dp_world_size,
            train_batch=train_batch_size,
            micro_batch=train_micro_batch_size_per_gpu,
            grad_acc=gradient_accumulation_steps,
        )
        self.update_values(
            {
                # batch size params
                "train_batch_size": train_batch_size,
                "train_micro_batch_size_per_gpu": train_micro_batch_size_per_gpu,
                "gradient_accumulation_steps": gradient_accumulation_steps,
                "batch_size": train_micro_batch_size_per_gpu,
                # duplicate items
                "clip_grad": self.gradient_clipping,
            }
        )

        # derive precision
        fp16_conflict = "DeepSpeed fp16 field was set but precision conflicts"
        if self.fp16 and self.fp16.get("enabled", False):
            if self.precision is None:
                self.update_value("precision", "fp16")
            else:
                assert self.precision == "fp16", fp16_conflict

        if self.precision == "fp16":
            if isinstance(self.fp16, dict) and len(self.fp16) > 0:
                fp16_args = copy.deepcopy(self.fp16)
                fp16_args["enabled"] = True
            else:
                fp16_args = {"type": "fp16", "enabled": True}
            self.update_value("fp16", fp16_args)
        elif self.precision == "bfloat16":
            bf_config = {"bf16": {"enabled": True}}
            # dt_config = {"grad_accum_dtype": "fp32"}
            if self.deepspeed_extra_args is None:
                self.update_value("deepspeed_extra_args", bf_config)
            else:
                extra_args = copy.deepcopy(self.deepspeed_extra_args)
                extra_args.update(bf_config)
                self.update_value("deepspeed_extra_args", extra_args)

            zero_stage = self.zero_optimization["stage"]
            if self.data_types is None:
                fp32_grad_accum = False
            else:
                fp32_grad_accum = self.data_types.get("grad_accum_dtype") == "fp32"
            if (zero_stage > 0) and (pp_size > 0) and not fp32_grad_accum:
                # Remove this code when this issue is resolved
                # https://github.com/microsoft/DeepSpeed/issues/1835
                logging.warn(
                    "Outstanding DeepSpeed issue means that pp>0, zero1, and bf16 will break without fp32 grads"
                )
        else:
            self.update_value("precision", "fp32")

        # zero optimization
        if self.zero_optimization is None:
            self.zero_optimization = copy.deepcopy(
                ZERO_DEFAULTS
            )  # a dict is overwritten and not updated key by key
        try:
            stage = self.zero_optimization["stage"]
            if stage in (0, 1, 2, 3):
                self.update_values(
                    {
                        "zero_stage": self.zero_optimization.get(
                            "stage", ZERO_DEFAULTS["stage"]
                        ),
                        "zero_reduce_scatter": self.zero_optimization.get(
                            "reduce_scatter", ZERO_DEFAULTS["reduce_scatter"]
                        ),
                        "zero_contiguous_gradients": self.zero_optimization.get(
                            "contiguous_gradients",
                            ZERO_DEFAULTS["contiguous_gradients"],
                        ),
                        "zero_reduce_bucket_size": self.zero_optimization.get(
                            "reduce_bucket_size", ZERO_DEFAULTS["reduce_bucket_size"]
                        ),
                        "zero_allgather_bucket_size": self.zero_optimization.get(
                            "allgather_bucket_size",
                            ZERO_DEFAULTS["allgather_bucket_size"],
                        ),
                    }
                )
            else:
                assert (
                    self.autotuning is not None
                ), f"Zero Stage must be an integer unless you are doing autotuning, not {stage}"
        except KeyError as ke:
            print(f"Zero Optimization config: {self.zero_optimization}")
            raise ke

        # optimizer and scheduler
        opt_params = self.optimizer or {
            "type": OPT_DEFAULT,
            "params": OPT_PARAMS_DEFAULTS,
        }
        self.update_values(
            {
                "optimizer_type": opt_params.get("type", OPT_DEFAULT),
                "lr": opt_params["params"].get("lr", OPT_PARAMS_DEFAULTS["lr"]),
            }
        )

        if self.optimizer_type.lower() == "onebitadam":
            assert (
                self.train_iters is not None
            ), "OneBitAdam requires train_iters to be specified"

            # onebitadam needs to instantiated by deepspeed, and so we need to pass deepspeed scheduler args
            # for all other optimizers, the scheduling is handled by megatron
            self.scheduler = {
                "type": "WarmupDecayLR",  # for now this is the only ds scheduler offering decay
                "params": {
                    "warmup_min_lr": 0,
                    "warmup_max_lr": self.lr,
                    "warmup_num_steps": int(self.train_iters * self.warmup),
                    "total_num_steps": self.lr_decay_iters or self.train_iters,
                },
            }

        # Fp16 loss scaling.
        self.update_value("dynamic_loss_scale", self.loss_scale is None)

        # Update 'is pipe parallel' flag
        # if we set pipe_parallel_size to 0, GPT2ModelPipe.to_sequential() is called, and we run training with
        # the sequential model without the PipelineModule wrapper to avoid the overhead it incurs
        self.update_value("is_pipe_parallel", self.pipe_parallel_size >= 1)
        if self.moe_num_experts > 1:
            assert not (
                self.is_pipe_parallel or self.pipe_parallel_size > 1
            ), "MoE not supported with pipeline parallelism"
            assert self.zero_optimization["stage"] != 3, "MoE not compatible with zero3"

            assert (
                self.sequence_parallel is False
            ), "MoE not compatible with Sequence Parallel"

        # Attention config
        if self.attention_config is None:
            self.update_value("attention_config", [[["global"], self.num_layers]])
        self.update_value(
            "attention_config",
            expand_attention_types(self.attention_config, self.num_layers),
        )
        assert (
            len(self.attention_config) == self.num_layers
        ), "Length of attention config list must equal num_layers"
        for item in self.attention_config:
            assert (
                item in ATTENTION_TYPE_CHOICES
            ), f"Attention type {item} not recognized"
        if "gmlp" in self.attention_config or "amlp" in self.attention_config:
            assert (
                not self.partition_activations
            ), "GMLP Blocks are not compatible with partition activations"
        if "mamba" in self.attention_config:
            if isinstance(self.zero_stage, int):
                assert self.zero_stage <= 2, "Zero stage 3 not compatible with Mamba"
            assert (
                self.hidden_dropout == 0.0,
            ), "Mamba does not yet have dropout implemented"
        if "rwkv" in self.attention_config:
            assert (
                self.model_parallel_size == 1
            ), "RWKV not currently compatible with model parallelism"
            if isinstance(self.zero_stage, int):
                assert self.zero_stage <= 2, "Zero stage 3 not compatible with RWKV"
            assert (
                self.hidden_dropout == 0.0,
            ), "RWKV does not yet have dropout implemented"

        # Sparsity config
        if self.sparsity_config is None:
            # Can't have a default value as an empty dict so need to set it here
            self.update_value("sparsity_config", {})

        # Multi-query or grouped-query attention settings
        if self.num_kv_heads is not None:
            # need KV heads <= query heads, and KV heads dividing query heads evenly
            assert (
                self.num_attention_heads % self.num_kv_heads == 0
            ), "num_kv_heads must evenly divide num_attention_heads and be no greater than it"

            if self.num_kv_heads < self.num_attention_heads:
                # GQA / MQA not compatible with sparse attention configurations
                assert (
                    not self.sparsity_config
                ), "Sparse attention not compatible with GQA or MQA"
                assert all(
                    (attn_type == "flash") or (attn_type == "global")
                    for attn_type in self.attention_config
                ), "GQA / MQA currently only compatible with Flash or standard global/sliding window Attention"
                assert (
                    self.num_kv_heads % self.model_parallel_size == 0
                ), "Number of KV heads must be at least model_parallel_size for now!"
        # Flash attention version >=2.3.0 required to combine Flash + Sliding Window Attention
        if "flash" in self.attention_config:
            _flash_version = packaging.version.Version(version("flash-attn"))
            if self.sliding_window_width is not None:
                assert _flash_version >= packaging.version.Version(
                    "2.3.0"
                ), f"Flash-Attention version ({str(_flash_version)}) must be >= 2.3.0 to support sliding window attention."
            if self.pos_emb == "alibi":
                if not _flash_version >= packaging.version.Version("2.4.0.post1"):
                    print(
                        f"Warning: Flash-Attention version ({str(_flash_version)}) must be >= 2.4.0.post1 to support AliBi. Falling back to flash-attn triton backend, but version 2.4.0.post1 or later will be required in future."
                    )

        # Adding equal dataset weights if none are provided
        if self.train_data_paths and (self.train_data_weights is None):
            self.train_data_weights = [1.0] * len(self.train_data_paths)
        elif self.pos_train_data_paths and (self.train_data_weights is None):
            self.train_data_weights = [1.0] * len(self.pos_train_data_paths)
        if self.valid_data_paths and (self.valid_data_weights is None):
            self.valid_data_weights = [1.0] * len(self.valid_data_paths)
        elif self.pos_valid_data_paths and (self.valid_data_weights is None):
            self.valid_data_weights = [1.0] * len(self.pos_valid_data_paths)
        if self.test_data_paths and (self.test_data_weights is None):
            self.test_data_weights = [1.0] * len(self.test_data_paths)
        elif self.pos_test_data_paths and (self.test_data_weights is None):
            self.test_data_weights = [1.0] * len(self.pos_test_data_paths)

        if self.train_label_data_paths:
            err_str = "Must use `train_label_data_paths` with `train_data_paths`, not `data_path`"
            assert self.train_data_paths and not self.data_path, err_str

        # if a sample input file is provided, default text_gen_type type to input-file
        if self.text_gen_type is None:
            if self.sample_input_file:
                self.update_value("text_gen_type", "input-file")
            else:
                self.update_value("text_gen_type", "unconditional")

    ############################################################################################################################
    # start of validation functions

    @classmethod
    def validate_keys(cls):
        """
        test that there are no duplicate arguments
        """
        source_classes = list(cls.__bases__)
        defined_properties = dict()

        for source_class in source_classes:
            source_vars = list(source_class.__dataclass_fields__)
            for item in source_vars:
                if item in defined_properties.keys():
                    logging.error(
                        f"({cls.__name__}) duplicate of item: {item}, in class {source_class.__name__} and {defined_properties[item]}"
                    )
                    return False
                else:
                    defined_properties[item] = source_class.__name__
        return True

    def validate_values(self):
        # the current codebase assumes running with deepspeed only
        if not self.deepspeed:
            return False

        # learning rate
        if self.lr is None:
            error_message = (
                f"{FAIL} " + self.__class__.__name__ + ".validate_values() lr is None"
            )
            logging.error(error_message)
            raise ValueError(error_message)
            return False

        # required arguments
        required_args = [
            "num_layers",
            "hidden_size",
            "num_attention_heads",
            "max_position_embeddings",
        ]
        for req_arg in required_args:
            if getattr(self, req_arg) is None:
                error_message = (
                    f"{FAIL}"
                    + self.__class__.__name__
                    + ".validate_values() "
                    + req_arg
                    + " is None."
                )
                logging.error(error_message)
                raise ValueError(error_message)
                return False

        # Checks.
        if self.hidden_size % self.num_attention_heads != 0 and not (
            "mamba" in self.attention_config
        ):
            error_message = (
                f"{FAIL}"
                + self.__class__.__name__
                + ".validate_values() hidden_size must be divisible by num_attention_heads"
            )
            logging.error(error_message)
            raise ValueError(error_message)
            return False

        if self.seq_length is not None:
            if not (self.max_position_embeddings >= self.seq_length):
                error_message = (
                    f"{FAIL}"
                    + self.__class__.__name__
                    + ".validate_values() max_position_embeddings must be bigger or equal seq_length"
                )
                logging.error(error_message)
                raise ValueError(error_message)
                return False

        if not (self.min_lr <= self.lr):
            error_message = (
                "{FAIL}"
                + self.__class__.__name__
                + ".validate_values() min_lr must be smaller or equal lr"
            )
            logging.error(error_message)
            raise ValueError(error_message)
            return False

        if (
            self.save is not None
            and self.checkpoint_factor is None
            and self.extra_save_iters is None
        ):
            error_message = (
                f"{FAIL}"
                + self.__class__.__name__
                + ".validate_values() checkpoint_factor or extra_save_iters must be defined if save is defined"
            )
            logging.error(error_message)
            raise ValueError(error_message)
            return False

        # Parameters sharing does not work with torch DDP.
        if (self.num_unique_layers is not None) and (self.num_layers is not None):
            if not (self.num_unique_layers <= self.num_layers):
                error_message = (
                    f"{FAIL}"
                    + self.__class__.__name__
                    + ".validate_values() num-unique-layers must be smaller or equal num_layers"
                )
                logging.error(error_message)
                raise ValueError(error_message)
                return False

            if not (self.num_layers % self.num_unique_layers == 0):
                error_message = (
                    f"{FAIL}"
                    + self.__class__.__name__
                    + ".validate_values() num-layers should be divisible by num-unique-layers"
                )
                logging.error(error_message)
                raise ValueError(error_message)
                return False

        if self.fp16_lm_cross_entropy and self.precision != "fp16":
            error_message = (
                f"{FAIL}"
                + self.__class__.__name__
                + ".validate_values() lm cross entropy in fp16 only support in fp16 mode."
            )
            logging.error(error_message)
            raise ValueError(error_message)
            return False

        # assert that if one of train/test/valid_data_path are provided, data_path should not be
        has_separate_path = [
            data_path is not None
            for data_path in [
                self.train_data_paths,
                self.valid_data_paths,
                self.test_data_paths,
            ]
        ]
        if all(has_separate_path):
            assert self.data_path is None, (
                f"{FAIL} Please provide *either* `data_path` or `train/valid/test_data_path` "
                "in args "
            )

        # assert that if one of train/test/valid_data_path are provided, all should be
        assert_error_mess = (
            f"{FAIL} One or more of train/valid/test data_path are not provided:\n\t"
        )
        assert_error_mess += "\n\t".join(
            [
                f"{name} data paths: {data_path},"
                for name, data_path in [
                    ["train", self.train_data_paths],
                    ["valid", self.valid_data_paths],
                    ["test", self.test_data_paths],
                ]
            ]
        )
        assert any(has_separate_path) == all(has_separate_path), assert_error_mess

        # assert that if train / valid / test data path(s) and weights are provided, that the paths and the weights should be equal length
        if self.train_data_paths is not None:
            assert len(self.train_data_paths) == len(self.train_data_weights)
        if self.valid_data_paths is not None:
            assert len(self.valid_data_paths) == len(self.valid_data_weights)
        if self.test_data_paths is not None:
            assert len(self.test_data_paths) == len(self.test_data_weights)

        return True

    def validate_types(self):
        """
        At runtime, checks types are actually the type specified.
        """
        for field_name, field_def in self.__dataclass_fields__.items():
            actual_value = getattr(self, field_name)
            if actual_value is None:
                continue  # we allow for some values not to be configured

            if self.autotuning is not None and actual_value == "auto":
                continue

            actual_type = type(actual_value)
            if actual_type != field_def.type:
                if (
                    actual_type == int and field_def.type == float
                ):  # floats should be able to be configured as ints
                    continue

                # for typing.Literal (i.e a list of choices) - checks that actual value is in accepted values
                elif field_def.type.__origin__ == Literal:
                    accepted_values = field_def.type.__args__
                    if actual_value in accepted_values:
                        continue
                    elif type(actual_value) == str:
                        # case insensitive checking
                        lowercase_accepted_values = [
                            i.lower() for i in accepted_values if isinstance(i, str)
                        ]
                        if actual_value.lower() in lowercase_accepted_values:
                            continue
                    logging.error(
                        f"{FAIL}"
                        + self.__class__.__name__
                        + ".validate_types() "
                        + f"{field_name}: '{actual_value}' Not in accepted values: '{accepted_values}'"
                    )
                    return False
                elif field_def.type.__origin__ == Union:
                    accepted_types = field_def.type.__args__
                    if actual_type in accepted_types:
                        continue
                    else:
                        logging.error(
                            f"{FAIL}"
                            + self.__class__.__name__
                            + ".validate_types() "
                            + f"{field_name}: '{actual_type}' not in {accepted_types}"
                        )
                        return False

                logging.error(
                    f"{FAIL}"
                    + self.__class__.__name__
                    + ".validate_types() "
                    + f"{field_name}: '{actual_type}' instead of '{field_def.type}'"
                )
                return False

        # validate deepspeed dicts
        for field_name in ["optimizer", "scheduler"]:
            value = getattr(self, field_name)
            if isinstance(
                value, dict
            ):  # dict is checked above, only fields are checked here
                if "type" in value:
                    if not isinstance(value["type"], str):
                        logging.error(
                            self.__class__.__name__
                            + ".validate_types() "
                            + f"{field_name}: key 'type' must be a string"
                        )
                        return False
                else:
                    logging.error(
                        f"{FAIL}"
                        + self.__class__.__name__
                        + ".validate_types() "
                        + f"{field_name}: must contain key 'type'"
                    )
                    return False
                if "params" in value:
                    if not isinstance(value["params"], dict):
                        logging.error(
                            f"{FAIL}"
                            + self.__class__.__name__
                            + ".validate_types() "
                            + f"{field_name}: key 'params' must be a dict"
                        )
                        return False
                else:
                    logging.error(
                        f"{FAIL}"
                        + self.__class__.__name__
                        + ".validate_types() "
                        + f"{field_name}: must contain key 'params'"
                    )
                    return False

        for field_name in ["fp16", "amp", "flops_profiler"]:
            value = getattr(self, field_name)
            if isinstance(value, dict):
                if not "enabled" in value:
                    error_message = (
                        f"{FAIL}"
                        + self.__class__.__name__
                        + ".validate_types() "
                        + f"{field_name}: must contain key 'enabled'"
                    )
                    logging.error(error_message)
                    return False

        return True