File size: 15,823 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# Copyright (c) 2024 EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for models."""
import torch
from megatron.model.fused_softmax import SoftmaxFusionTypes
from megatron import mpu
from types import GeneratorType
import torch.distributed as dist
import importlib
from typing import List, Dict, Any
def get_params_for_weight_decay_optimization(module: Any, neox_args: Any):
"""
Divide params into with-weight-decay and without-weight-decay groups.
Layernorms and biases will have no weight decay but the rest will.
"""
weight_decay_params = {"params": [], "name": "weight_decay_params"}
no_weight_decay_params = {
"params": [],
"weight_decay": 0.0,
"name": "no_weight_decay_params",
}
def is_no_weight_decay_module(module_: Any) -> bool:
return (
type(module_).__name__
in [
"LayerNorm",
"RMSNorm",
"ScaleNorm",
"TELayerNorm",
"TERMSNorm",
"MixedFusedLayerNorm",
"MixedFusedRMSNorm",
]
or neox_args.weight_decay == 0.0
)
for module_ in module.modules():
if is_no_weight_decay_module(module_):
no_weight_decay_params["params"].extend(
[p for p in module_._parameters.values() if p is not None]
)
else:
for name, param in module_._parameters.items():
if param is None:
continue
if name == "bias" or getattr(param, "_no_weight_decay", False):
no_weight_decay_params["params"].append(param)
else:
weight_decay_params["params"].append(param)
if neox_args.weight_decay == 0.0:
# Only return a single param group to minimize calls to compressed_allreduce with onebitadam
return [no_weight_decay_params]
return weight_decay_params, no_weight_decay_params
def exists(x):
return x is not None
class Lambda(torch.nn.Module):
def __init__(self, func):
super().__init__()
self.func = func
def forward(self, x):
return self.func(x)
class SequentialWrapper(torch.nn.Module):
"""
Used to convert a deepspeed PipelineModule to an nn.Sequential like model whilst retaining
activation checkpointing.
"""
def __init__(
self,
layers,
activation_checkpoint_interval,
activation_checkpoint_func,
parent_class_name=None,
):
super().__init__()
self.sequential = torch.nn.Sequential(*layers)
self.activation_checkpoint_interval = activation_checkpoint_interval
self.parent_class_name = parent_class_name
self.activation_checkpoint_func = activation_checkpoint_func
self.batch_fn = None
def _is_checkpointable(self, funcs):
if self.parent_class_name == "GPT2ModelPipe":
return all(
"ParallelTransformerLayerPipe" in f.__class__.__name__ for f in funcs
)
params = [f.parameters() for f in funcs if isinstance(f, torch.nn.Module)]
return any(len(list(p)) > 0 for p in params)
def set_batch_fn(self, fn):
"""Execute a post-processing function on input data.
Args:
fn (function): The function to run.
"""
self.batch_fn = fn
def inference_mode(self, use_cache=True):
"""
Sets up the model for inference by turning on k/v caching (if specified) and setting `parallel output` of the final layer to false,
so logits are gathered across model parallel ranks.
:param cache: (bool) True if you want to use caching during inference, False otherwise
"""
_set_use_cache(self.sequential, use_cache)
recursive_setattr(self.sequential, "training", False)
def train_mode(self):
"""
Sets up the model for training by turning off k/v caching.
"""
_set_use_cache(self.sequential, False)
recursive_setattr(self.sequential, "training", True)
def forward(
self, forward_input, curriculum_seqlen=None, labels=None, neox_args=None
):
if self.batch_fn:
forward_input = self.batch_fn(forward_input)
if (
curriculum_seqlen is not None
and isinstance(forward_input, tuple)
and len(forward_input) == 3
):
neox_args.update_value("curriculum_seqlen", curriculum_seqlen)
tokens = forward_input[0]
input_ids = forward_input[1]
attention_mask = forward_input[2]
if curriculum_seqlen < input_ids.size()[1]:
# seqlen-based curriculum learning
# input_ids, position_ids, labels have size [batch size, seqlen]
input_ids = input_ids[:, :curriculum_seqlen].contiguous()
tokens = tokens[:, :curriculum_seqlen].contiguous()
# position_ids = position_ids[:, :curriculum_seqlen].contiguous()
if labels is not None:
labels = labels[:, :curriculum_seqlen].contiguous()
# attention_mask has size [1, 1, seqlen, seqlen]
attention_mask = attention_mask[
:, :, :curriculum_seqlen, :curriculum_seqlen
].contiguous()
forward_input = (tokens, input_ids, attention_mask)
moe_losses = []
def exec_range_func(start, end):
"""Helper function to be used with checkpoint()
Adapted from torch.utils.checkpoint:checkpoint_sequential()
"""
def exec_func(*inputs):
# Single tensor inputs need to be unwrapped
if len(inputs) == 1:
inputs = inputs[0]
for idx, layer in enumerate(self.sequential[start:end]):
inputs = layer(inputs)
if hasattr(layer, "last_moe_loss"):
moe_losses.append(layer.last_moe_loss)
return inputs
return exec_func
if self.activation_checkpoint_interval == 0:
func = exec_range_func(0, len(self.sequential))
x = func(forward_input)
else:
num_layers = len(self.sequential)
x = forward_input
for start_idx in range(0, num_layers, self.activation_checkpoint_interval):
end_idx = min(
start_idx + self.activation_checkpoint_interval, num_layers
)
funcs = self.sequential[start_idx:end_idx]
# Since we either pass tensors or tuples of tensors without unpacking, we
# need to be careful not to double-wrap tensors with tuple.
if not isinstance(x, tuple):
x = (x,)
if self._is_checkpointable(funcs):
x = self.activation_checkpoint_func(
exec_range_func(start_idx, end_idx), *x
)
else:
x = exec_range_func(start_idx, end_idx)(*x)
return x, moe_losses
def clear_cache(self):
"""
Recursively clears the kv cache on all layers
"""
recursive_setattr(self.sequential, "layer_past", None)
def recursive_setattr(m, attr, value, assert_type=None, type_filter=None):
"""
Recursively set attributes on a pytorch module or an iterable of modules.
If an assert_type is provided, it will assert that the type of the value is the same as the assert_type.
If a type_filter is provided, it will only set attributes on modules that match that type.
"""
if assert_type is not None:
assert isinstance(value, assert_type), "Value is not the correct type."
# if m is a list or a generator, iterate over the elements
if isinstance(m, (list, GeneratorType)):
for i in m:
recursive_setattr(i, attr, value, assert_type, type_filter)
elif isinstance(m, torch.nn.Module):
if hasattr(m, attr):
if type_filter is None or isinstance(m, type_filter):
setattr(m, attr, value)
if hasattr(m, "children"):
recursive_setattr(m.children(), attr, value, assert_type, type_filter)
def _set_use_cache(modules, value: bool):
"""
Recursively sets an use_cache to `value` on a list of pytorch modules, if they have a use_cache attribute.
use_cache is used to decide whether we cache past key value activations or not in inference.
"""
recursive_setattr(modules, "use_cache", value, assert_type=bool)
def configure_sparse_attention(neox_args, attention_type, num_attention_heads, mpu):
from deepspeed.ops.sparse_attention import (
SparseSelfAttention,
VariableSparsityConfig,
FixedSparsityConfig,
BigBirdSparsityConfig,
BSLongformerSparsityConfig,
)
from deepspeed.ops.sparse_attention.sparsity_config import (
LocalSlidingWindowSparsityConfig,
)
if attention_type == "sparse_fixed":
# you can think of local window size as `block_size` * `num_local_blocks`.
# so if you wanted to set a local window size of 256, set block size to 16 and `num_local_blocks` to 16
sparsity_config = FixedSparsityConfig(
num_heads=num_attention_heads,
block=neox_args.sparsity_config.get("block", 16),
different_layout_per_head=neox_args.sparsity_config.get(
"different_layout_per_head", False
),
num_local_blocks=neox_args.sparsity_config.get("num_local_blocks", 4),
num_global_blocks=neox_args.sparsity_config.get("num_global_blocks", 1),
num_different_global_patterns=neox_args.sparsity_config.get(
"num_different_global_patterns", 1
),
attention="unidirectional",
horizontal_global_attention=False,
)
elif attention_type == "sparse_variable":
sparsity_config = VariableSparsityConfig(
num_heads=num_attention_heads,
block=neox_args.sparsity_config.get("block", 16),
different_layout_per_head=neox_args.sparsity_config.get(
"different_layout_per_head", False
),
num_random_blocks=neox_args.sparsity_config.get("num_random_blocks", 0),
local_window_blocks=neox_args.sparsity_config.get(
"local_window_blocks", [4]
),
global_block_indices=neox_args.sparsity_config.get(
"global_block_indices", [0]
),
global_block_end_indices=neox_args.sparsity_config.get(
"global_block_end_indices", None
),
attention="unidirectional",
horizontal_global_attention=False,
)
elif attention_type == "local":
# can configure with `num_local_blocks` or `num_sliding_window_blocks`
num_local_blocks = neox_args.sparsity_config.get(
"num_local_blocks",
neox_args.sparsity_config.get("num_sliding_window_blocks", 4),
)
sparsity_config = LocalSlidingWindowSparsityConfig(
num_heads=num_attention_heads,
block=neox_args.sparsity_config.get("block", 16),
num_sliding_window_blocks=num_local_blocks,
attention="unidirectional",
)
elif attention_type == "bigbird":
sparsity_config = BigBirdSparsityConfig(
num_heads=num_attention_heads,
block=neox_args.sparsity_config.get("block", 16),
different_layout_per_head=neox_args.sparsity_config.get(
"different_layout_per_head", False
),
num_random_blocks=neox_args.sparsity_config.get("num_random_blocks", 1),
num_sliding_window_blocks=neox_args.sparsity_config.get(
"num_sliding_window_blocks", 3
),
num_global_blocks=neox_args.sparsity_config.get("num_global_blocks", 1),
attention="unidirectional",
)
elif attention_type == "bslongformer":
sparsity_config = BSLongformerSparsityConfig(
num_heads=num_attention_heads,
block=neox_args.sparsity_config.get("block", 16),
different_layout_per_head=neox_args.sparsity_config.get(
"different_layout_per_head", False
),
num_sliding_window_blocks=neox_args.sparsity_config.get(
"num_sliding_window_blocks", 3
),
global_block_indices=neox_args.sparsity_config.get(
"global_block_indices", [0]
),
global_block_end_indices=neox_args.sparsity_config.get(
"global_block_end_indices", None
),
attention="unidirectional",
)
else:
raise ValueError(f"Attention type {attention_type} not recognized")
return SparseSelfAttention(
sparsity_config=sparsity_config,
max_seq_length=neox_args.seq_length,
attn_mask_mode="add",
mpu=mpu,
)
def get_fusion_type(neox_args):
fusion_type = SoftmaxFusionTypes.none
if neox_args.scaled_upper_triang_masked_softmax_fusion:
fusion_type = SoftmaxFusionTypes.upper_triang
elif neox_args.scaled_masked_softmax_fusion:
fusion_type = SoftmaxFusionTypes.general
return fusion_type
def reduce_weight_grads_from_model_parallel_region(input_):
"""A hook that can be applied to any weight tensor via .register_hook().
Allreduces grads for e.g. LN weights across the model parallel group.
Needed to keep LNs in sync, despite them getting diff data -> diff gradients when using sequence parallel.
"""
# Bypass the function if no TP -> no comm needed.
if mpu.get_model_parallel_world_size() == 1:
return input_
# Bf16 convert
dt = input_.dtype
if dt == torch.bfloat16 and mpu.get_fp32_allreduce():
input_ = input_.float()
# All-reduce.
dist.all_reduce(input_, group=mpu.get_model_parallel_group())
# Bf16 convert
if dt == torch.bfloat16 and mpu.get_fp32_allreduce():
input_ = input_.bfloat16()
return input_
def mark_norms_for_sequence_parallel_grad_sync(module, neox_args):
"""Iterate through the modules in our model, and for any "...Norm" classnames,
register a hook on each of that module's parameters which will allreduce norms' weights' grads across
the model (sequence) parallel region.
"""
if not neox_args.sequence_parallel:
# if we aren't using sequence parallelism, this is a no-op
return
for module_ in module.modules():
if "norm" in type(module_).__name__.lower():
# this is a norm, we want to allreduce its weight grads across sequence parallel region
for name, param in module_.named_parameters():
if param.requires_grad:
param.register_hook(reduce_weight_grads_from_model_parallel_region)
|