File size: 3,049 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch

try:
    import transformer_engine as te
except ImportError:
    raise ImportError(
        "Unable to import transformer-engine. Please refer to "
        "https://github.com/NVIDIA/TransformerEngine for installation instructions."
    )


class TERMSNorm(torch.nn.Module):
    def __init__(self, dim, eps=1e-8, **kwargs):
        """
            A conditional wrapper to initialize an instance of Transformer-Engine's
            `RMSNorm` based on input
        :param dim: model size
        :param eps:  epsilon value, default 1e-8
        """
        super(TERMSNorm, self).__init__()

        self.d = dim
        self.eps = eps
        self.norm = te.pytorch.RMSNorm(
            hidden_size=self.d,
            eps=self.eps,
            **kwargs,
        )

    def forward(self, x):
        return self.norm(x)


class TELayerNorm(torch.nn.Module):
    def __init__(self, dim, eps=1.0e-5, **kwargs):
        """
            A conditional wrapper to initialize an instance of Transformer-Engine's
            `LayerNorm` based on input
        :param dim: model size
        :param eps:  epsilon value, default 1.0e-5
        """
        super(TELayerNorm, self).__init__()

        self.d = dim
        self.eps = eps
        self.norm = te.pytorch.LayerNorm(
            hidden_size=self.d,
            eps=self.eps,
            **kwargs,
        )

    def forward(self, x):
        return self.norm(x)


class TELinear(te.pytorch.Linear):
    """
    Wrapper for the Transformer-Engine's `Linear` layer.
    """

    def __init__(self):
        # TODO
        return

    def forward(self, x):
        # TODO
        return


class TELayerNormColumnParallelLinear(te.pytorch.LayerNormLinear):
    """
    Wrapper for the Transformer-Engine's `LayerNormLinear` layer that combines
    layernorm and linear layers
    """

    def __init__(self):
        # TODO
        return

    def forward(self, x):
        # TODO
        return


class TEColumnParallelLinear(TELinear):
    """
    Wrapper for the Transformer-Engine's `Linear` layer but specialized similar
    to megatron's `ColumnParallelLinear` layer.
    """

    def __init__(self):
        # TODO
        return

    def forward(self, x):
        # TODO
        return


class TERowParallelLinear(TELinear):
    """
    Wrapper for the Transformer-Engine's `Linear` layer but specialized similar
    to megatron's `RowParallelLinear` layer.
    """

    def __init__(self):
        # TODO
        return

    def forward(self, x):
        # TODO
        return


class TEDotProductAttention(te.pytorch.DotProductAttention):
    """
    Wrapper for the Transformer-Engine's `DotProductAttention` layer that also
    has "flash attention" enabled.
    """

    def __init__(self):
        # TODO
        return

    def forward(self, x):
        # TODO
        return


class TEDelayedScaling(te.common.recipe.DelayedScaling):
    """
    Wrapper for the Transformer-Engine's `DelayedScaling` layer.
    """

    def __init__(self):
        # TODO
        return