File size: 10,164 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import math


class SinusoidalPositionalEmbedding(torch.nn.Module):
    def __init__(self, dim, base=10000, precision=torch.half):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.precision = precision

    def forward(self, x, seq_dim=1):
        t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
        sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
        if self.precision == torch.bfloat16:
            sinusoid_inp = sinusoid_inp.float()
        sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos()
        if self.precision == torch.bfloat16:
            sin, cos = sin.bfloat16(), cos.bfloat16()
        emb = torch.cat((sin, cos), dim=-1)
        return emb[None, :, :]


class RotaryEmbedding(torch.nn.Module):
    def __init__(
        self, dim, max_seq_len, base=10000, precision=torch.half, save_inv_freqs=False
    ):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=save_inv_freqs)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None
        self.precision = precision
        self.max_seq_len = max_seq_len
        self.base = base
        self.dim = dim

        # precompute cos_cached, sin_cached in fp32
        cos_cached, sin_cached, inv_freq = self._prepare_cache(
            max_seq_len, precision, base
        )

        self.register_buffer("inv_freq", inv_freq, persistent=save_inv_freqs)
        self.cos_cached = cos_cached
        self.sin_cached = sin_cached

    def _prepare_cache(self, seq_len, precision, base):
        # precompute cos_cached, sin_cached in fp32
        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float() / self.dim))

        t = torch.arange(seq_len).type_as(inv_freq)
        freqs = torch.einsum("i,j->ij", t, inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)

        cos_cached = emb.cos()[:, None, None, :]
        sin_cached = emb.sin()[:, None, None, :]

        return (
            cos_cached.to(precision),
            sin_cached.to(precision),
            inv_freq.to(precision),
        )

    def forward(self, x, seq_dim=0, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]

        assert seq_len <= self.max_seq_len

        if seq_len != self.max_seq_len:
            # y, z, _ = self._prepare_cache(seq_len, self.precision, self.base)
            return (
                self.cos_cached[:seq_len, ...].to(x.device),
                self.sin_cached[:seq_len, ...].to(x.device),
            )
        else:
            return self.cos_cached.to(x.device), self.sin_cached.to(x.device)


# rotary pos emb helpers:


def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat(
        (-x2, x1), dim=x1.ndim - 1
    )  # dim=-1 triggers a bug in earlier torch versions


@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
    cos, sin = (
        cos[offset : q.shape[0] + offset, ...],
        sin[offset : q.shape[0] + offset, ...],
    )
    return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)


def apply_rotary_pos_emb_torch(
    q, k, cos, sin, offset: int = 0
):  # jitting fails with bf16
    cos, sin = (
        cos[offset : q.shape[0] + offset, ...],
        sin[offset : q.shape[0] + offset, ...],
    )
    return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)


class AliBi(torch.nn.Module):
    def __init__(self, num_heads, mp_size=1, mp_rank=1):
        super().__init__()
        # megatron splits across heads, so we need to make sure each
        # head receives the correct matrix
        assert mp_size <= num_heads and mp_rank <= mp_size
        self.mp_size = mp_size
        self.mp_rank = mp_rank
        self.num_heads = num_heads
        self.slice_size = num_heads // mp_size
        self.cached_matrix = None
        self.cached_seq_len = None
        slopes = torch.Tensor(self._get_slopes(num_heads))[
            mp_rank * self.slice_size : (mp_rank + 1) * self.slice_size
        ]
        self.register_buffer("slopes", slopes)

    def _get_slopes(self, n):
        """
        Get slopes for Alibi positional embedding
        n : int = number of heads.
        For best performance, restrict n to a power of 2.
        """

        def get_slopes_power_of_2(n):
            start = 2 ** (-(2 ** -(math.log2(n) - 3)))
            ratio = start
            return [start * ratio**i for i in range(n)]

        if math.log2(n).is_integer():
            return get_slopes_power_of_2(n)
        else:
            closest_power_of_2 = 2 ** math.floor(math.log2(n))
            return (
                get_slopes_power_of_2(closest_power_of_2)
                + self._get_slopes(2 * closest_power_of_2)[0::2][
                    : n - closest_power_of_2
                ]
            )

    def bias(self, seq_len_q, seq_len_k, device, dtype):
        # [b, np, sq, sk]
        # seq_len_q = x.shape[-2]
        # seq_len_k = x.shape[-1]

        # Initialize the AliBi matrix to match the first provided key length; grow it exponentially
        # afterwards if longer inputs are provided. This is important for inference, where we will
        # encounter progressively longer samples; it should have no effect at training time.
        if self.cached_seq_len is not None and self.cached_seq_len >= seq_len_k:
            a = self.cached_matrix
        else:
            target_seq_len = (
                seq_len_k if self.cached_seq_len is None else self.cached_seq_len * 4
            )
            a = -torch.tril(
                torch.arange(target_seq_len)
                .view(target_seq_len, 1)
                .repeat(1, target_seq_len)
                + torch.arange(0, -target_seq_len, -1)
            )
            a = a.to(device).to(dtype)
            slopes = self.slopes.to(a.device).to(a.dtype)
            a = a * slopes.view(self.slopes.shape[0], 1, 1)
            self.cached_seq_len = target_seq_len
            self.cached_matrix = a

        # If the AliBi matrix is larger than the key length, clip it.
        if self.cached_seq_len > seq_len_k:
            a = self.cached_matrix[:, :seq_len_k, :seq_len_k]

        if seq_len_q != seq_len_k:
            # In the train case x has dimensionality [b, np, sq, sk] with sq == sk
            # The number of query tokens is equal to the number of key tokens
            # At inference time with cache in layer_past sq is not equal to sk. sq only contains one token (the last one in the full sequence)
            # In this case we use the appropriate token index of the cache matrix.
            # As the cache matrix could already be bigger from a past inference, not the last token index in the sq sequence is used
            assert (
                seq_len_q == 1
            ), "assumption sq == sk unless at inference time with cache in layer_past with sq == 1"
            a = a[:, seq_len_k - 1, :].view(
                a.shape[0], 1, a.shape[2]
            )  # seq_len_k - 1 points to the last token index in the current inference batch.

        return a

    def forward(self, x):
        # [b, np, sq, sk]
        seq_len_q = x.shape[-2]
        seq_len_k = x.shape[-1]

        # Initialize the AliBi matrix to match the first provided key length; grow it exponentially
        # afterwards if longer inputs are provided. This is important for inference, where we will
        # encounter progressively longer samples; it should have no effect at training time.
        if self.cached_seq_len is not None and self.cached_seq_len >= seq_len_k:
            a = self.cached_matrix
        else:
            target_seq_len = (
                seq_len_k if self.cached_seq_len is None else self.cached_seq_len * 4
            )
            a = -torch.tril(
                torch.arange(target_seq_len)
                .view(target_seq_len, 1)
                .repeat(1, target_seq_len)
                + torch.arange(0, -target_seq_len, -1)
            )
            a = a.to(x.device).to(x.dtype)
            slopes = self.slopes.to(a.device).to(a.dtype)
            a = a * slopes.view(self.slopes.shape[0], 1, 1)
            self.cached_seq_len = target_seq_len
            self.cached_matrix = a

        # If the AliBi matrix is larger than the key length, clip it.
        if self.cached_seq_len > seq_len_k:
            a = self.cached_matrix[:, :seq_len_k, :seq_len_k]

        if seq_len_q != seq_len_k:
            # In the train case x has dimensionality [b, np, sq, sk] with sq == sk
            # The number of query tokens is equal to the number of key tokens
            # At inference time with cache in layer_past sq is not equal to sk. sq only contains one token (the last one in the full sequence)
            # In this case we use the appropriate token index of the cache matrix.
            # As the cache matrix could already be bigger from a past inference, not the last token index in the sq sequence is used
            assert (
                seq_len_q == 1
            ), "assumption sq == sk unless at inference time with cache in layer_past with sq == 1"
            a = a[:, seq_len_k - 1, :].view(
                a.shape[0], 1, a.shape[2]
            )  # seq_len_k - 1 points to the last token index in the current inference batch.

        return x + a