File size: 7,674 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import torch

try:
    import mup
except ImportError:
    pass


def init_method_normal(sigma, use_mup_outer=False, mup_init_scale=1.0):
    """Init method based on N(0, sigma)."""

    def init_(tensor, use_mup=use_mup_outer):
        if use_mup:
            mup.init.normal_(tensor, mean=0.0, std=sigma)
            with torch.no_grad():
                tensor.mul_(mup_init_scale)
            return tensor
        else:
            return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)

    return init_


def scaled_init_method_normal(
    sigma,
    num_layers,
    use_mup_outer=False,
    mup_init_scale=1.0,
    num_residuals_per_layer=2,
):
    """Init method based on N(0, sigma/sqrt(2*num_layers).

    Also allows for N(0, sigma/sqrt(x*num_layers)) where
    x=number of residuals per layer (e.g. 1 for Mamba.)
    """
    std = sigma / math.sqrt(num_residuals_per_layer * num_layers)

    def init_(tensor, use_mup=use_mup_outer):
        if use_mup:
            mup.init.normal_(tensor, mean=0.0, std=std)
            with torch.no_grad():
                tensor.mul_(mup_init_scale)
            return tensor
        else:
            return torch.nn.init.normal_(tensor, mean=0.0, std=std)

    return init_


# orthogonal init does not support fp16, so have to patch it
def _orthogonal(tensor, gain=1):

    if tensor.ndimension() < 2:
        raise ValueError("Only tensors with 2 or more dimensions are supported")

    rows = tensor.size(0)
    cols = tensor.numel() // rows
    flattened = tensor.new(rows, cols).normal_(0, 1)

    if rows < cols:
        flattened.t_()

    # Compute the qr factorization
    dt = flattened.dtype
    flattened = flattened.to(torch.float32)  # orthogonal init does not support fp16
    q, r = torch.qr(flattened)
    q, r = q.to(dtype=dt), r.to(dtype=dt)
    # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
    d = torch.diag(r, 0)
    ph = d.sign()
    q *= ph

    if rows < cols:
        q.t_()

    with torch.no_grad():
        tensor.view_as(q).copy_(q)
        tensor.mul_(gain)
    return tensor


def orthogonal_init_method(n_layers=1, use_mup=False, mup_init_scale=1.0):
    """Fills the input Tensor with a (semi) orthogonal matrix, as described in
    Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe, A. et al. (2013)
    Optionally scaling by number of layers possible, as introduced in OBST - Nestler et. al. (2021, to be released)"""

    if use_mup:
        raise ValueError(
            "Orthogonal init needs to be patched to support mup. Disable mup or use a different init method to avoid this error"
        )

    def init_(tensor):
        return _orthogonal(tensor, math.sqrt(2 / n_layers))

    return init_


def xavier_uniform_init_method(use_mup_outer=False, mup_init_scale=1.0):
    """Fills the input Tensor with values according to the method described in Understanding the difficulty of
    training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform distribution."""

    def init_(tensor, use_mup=use_mup_outer):
        if use_mup:
            mup.init.xavier_uniform_(tensor)
            with torch.no_grad():
                tensor.mul_(mup_init_scale)
            return tensor
        else:
            return torch.nn.init.xavier_uniform_(tensor)

    return init_


def xavier_normal_init_method(use_mup_outer=False, mup_init_scale=1.0):
    """Fills the input Tensor with values according to the method described in Understanding the difficulty of
    training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a normal distribution."""

    def init_(tensor, use_mup=use_mup_outer):
        if use_mup:
            mup.init.xavier_normal_(tensor)
            with torch.no_grad():
                tensor.mul_(mup_init_scale)
            return tensor
        else:
            return torch.nn.init.xavier_normal_(tensor)

    return init_


def small_init_init_method(dim, use_mup_outer=False, mup_init_scale=1.0):
    """Fills the input Tensor with values according to the method described in Transformers without Tears: Improving
    the Normalization of Self-Attention - Nguyen, T. & Salazar, J. (2019), using a normal distribution."""
    std = math.sqrt(2 / (5 * dim))

    def init_(tensor, use_mup=use_mup_outer):
        if use_mup:
            mup.init.normal_(tensor, mean=0.0, std=std)
            with torch.no_grad():
                tensor.mul_(mup_init_scale)
            return tensor
        else:
            return torch.nn.init.normal_(tensor, mean=0.0, std=std)

    return init_


def wang_init_method(n_layers, dim, use_mup_outer=False, mup_init_scale=1.0):
    std = 2 / n_layers / math.sqrt(dim)

    def init_(tensor, use_mup=use_mup_outer):
        if use_mup:
            mup.init.normal_(tensor, mean=0.0, std=std)
            with torch.no_grad():
                tensor.mul_(mup_init_scale)
            return tensor
        else:
            return torch.nn.init.normal_(tensor, mean=0.0, std=std)

    return init_


def get_init_methods(args):

    if args.use_mup:
        try:
            import mup
        except ModuleNotFoundError:
            print("Please install mup https://github.com/microsoft/mup")
            raise Exception

    def _get(name):
        if name == "normal":
            return init_method_normal(
                args.init_method_std, args.use_mup, args.mup_init_scale
            )
        elif name == "scaled_normal":
            return scaled_init_method_normal(
                args.init_method_std, args.num_layers, args.use_mup, args.mup_init_scale
            )
        elif name == "orthogonal":
            return orthogonal_init_method(args.use_mup, args.mup_init_scale)
        elif name == "scaled_orthogonal":
            return orthogonal_init_method(
                args.num_layers, args.use_mup, args.mup_init_scale
            )
        elif name == "xavier_uniform":
            return xavier_uniform_init_method(args.use_mup, args.mup_init_scale)
        elif name == "xavier_normal":
            return xavier_normal_init_method(args.use_mup, args.mup_init_scale)
        elif name == "wang_init":
            return wang_init_method(
                args.num_layers, args.hidden_size, args.use_mup, args.mup_init_scale
            )
        elif name == "small_init":
            return small_init_init_method(
                args.hidden_size, args.use_mup, args.mup_init_scale
            )
        elif name == "single_residual_scaled_normal":
            # mamba init uses scaled_normal but no need for 2 * num_layers
            # since only one residual per layer
            return scaled_init_method_normal(
                args.init_method_std,
                args.num_layers,
                args.use_mup,
                args.mup_init_scale,
                num_residuals_per_layer=1,
            )
        else:
            raise NotImplementedError(f"Unknown init method {name}")

    return _get(args.init_method), _get(args.output_layer_init_method)