File size: 15,728 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include "fused_rotary_positional_embedding.h"
#include "type_shim.h"
namespace fused_rope {
torch::Tensor fwd_cuda(const torch::Tensor& input,
const torch::Tensor& freqs,
const bool transpose_output)
{
// input sizes: (s, b, h, d)
// s: sequence length
// b: batch size
// h: head num
// d: dim of each head
const int s = input.size(0);
const int b = input.size(1);
const int h = input.size(2);
const int d = input.size(3);
// input strides
const int stride_s = input.stride(0);
const int stride_b = input.stride(1);
const int stride_h = input.stride(2);
const int stride_d = input.stride(3);
// freqs' shape is always (s, 1, 1, d2), so the strides are same under
// different memory formats
const int d2 = freqs.size(3);
// output
auto act_options = input.options().requires_grad(false);
torch::Tensor output;
if (transpose_output) {
output = torch::empty({b, s, h, d}, act_options).transpose(0, 1);
} else {
output = torch::empty({s, b, h, d}, act_options);
}
// output strides
const int o_stride_s = output.stride(0);
const int o_stride_b = output.stride(1);
const int o_stride_h = output.stride(2);
const int o_stride_d = output.stride(3);
DISPATCH_FLOAT_HALF_AND_BFLOAT(input.scalar_type(),
0,
"dispatch_fused_rope_forward",
dispatch_fused_rope_forward(s,
b,
h,
d,
d2,
stride_s,
stride_b,
stride_h,
stride_d,
o_stride_s,
o_stride_b,
o_stride_h,
o_stride_d,
input.data_ptr<scalar_t_0>(),
freqs.data_ptr<float>(),
output.data_ptr<scalar_t_0>()););
return output;
}
torch::Tensor bwd_cuda(const torch::Tensor& output_grads,
const torch::Tensor& freqs,
const bool transpose_output)
{
// output_grads sizes: (s, b, h, d)
// s: sequence length
// b: batch size
// h: head num
// d: dim of each head
const int s = output_grads.size(0);
const int b = output_grads.size(1);
const int h = output_grads.size(2);
const int d = output_grads.size(3);
// output_grads strides
const int stride_s = output_grads.stride(0);
const int stride_b = output_grads.stride(1);
const int stride_h = output_grads.stride(2);
const int stride_d = output_grads.stride(3);
// freqs' shape is always (s, 1, 1, d2), so the strides are same under
// different memory formats
const int d2 = freqs.size(3);
auto act_options = output_grads.options().requires_grad(false);
torch::Tensor input_grads;
if (transpose_output) {
input_grads = torch::empty({b, s, h, d}, act_options).transpose(0, 1);
} else {
input_grads = torch::empty({s, b, h, d}, act_options);
}
const int o_stride_s = input_grads.stride(0);
const int o_stride_b = input_grads.stride(1);
const int o_stride_h = input_grads.stride(2);
const int o_stride_d = input_grads.stride(3);
DISPATCH_FLOAT_HALF_AND_BFLOAT(
output_grads.scalar_type(),
0,
"dispatch_fused_rope_backward",
dispatch_fused_rope_backward(s,
b,
h,
d,
d2,
stride_s,
stride_b,
stride_h,
stride_d,
o_stride_s,
o_stride_b,
o_stride_h,
o_stride_d,
output_grads.data_ptr<scalar_t_0>(),
freqs.data_ptr<float>(),
input_grads.data_ptr<scalar_t_0>()););
return input_grads;
}
#define DISPATCH_FUSED_ROPE_TYPES(TYPE1, TYPE2, NAME, ...) \
switch (TYPE1) { \
case at::ScalarType::Float: { \
using scalar_t_0 = float; \
switch (TYPE2) { \
case at::ScalarType::Float: { \
using scalar_t_1 = float; \
__VA_ARGS__; \
break; \
} \
default: \
TORCH_CHECK(false, \
#NAME, \
" not supported for '", \
toString(TYPE1), \
"' with '", \
toString(TYPE2), \
"'"); \
} \
break; \
} \
case at::ScalarType::Half: { \
using scalar_t_0 = at::Half; \
switch (TYPE2) { \
case at::ScalarType::Float: { \
using scalar_t_1 = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: { \
using scalar_t_1 = at::Half; \
__VA_ARGS__; \
break; \
} \
default: \
TORCH_CHECK(false, \
#NAME, \
" not supported for '", \
toString(TYPE1), \
"' with '", \
toString(TYPE2), \
"'"); \
} \
break; \
} \
case at::ScalarType::BFloat16: { \
using scalar_t_0 = at::BFloat16; \
switch (TYPE2) { \
case at::ScalarType::Float: { \
using scalar_t_1 = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: { \
using scalar_t_1 = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
TORCH_CHECK(false, \
#NAME, \
" not supported for '", \
toString(TYPE1), \
"' with '", \
toString(TYPE2), \
"'"); \
} \
break; \
} \
default: \
TORCH_CHECK(false, \
#NAME, \
" not supported for '", \
toString(TYPE1), \
"' with '", \
toString(TYPE2), \
"'"); \
}
torch::Tensor fwd_cached_cuda(const torch::Tensor& input,
const torch::Tensor& cos,
const torch::Tensor& sin,
const bool transpose_output)
{
// input sizes: (s, b, h, d)
// s: sequence length
// b: batch size
// h: head num
// d: dim of each head
const int s = input.size(0);
const int b = input.size(1);
const int h = input.size(2);
const int d = input.size(3);
// input strides
const int stride_s = input.stride(0);
const int stride_b = input.stride(1);
const int stride_h = input.stride(2);
const int stride_d = input.stride(3);
// cos/sin's shape is always (s, 1, 1, d2), so the strides are same under
// different memory formats
const int d2 = cos.size(3);
// output
auto act_options = input.options().requires_grad(false);
torch::Tensor output;
if (transpose_output) {
output = torch::empty({b, s, h, d}, act_options).transpose(0, 1);
} else {
output = torch::empty({s, b, h, d}, act_options);
}
// output strides
const int o_stride_s = output.stride(0);
const int o_stride_b = output.stride(1);
const int o_stride_h = output.stride(2);
const int o_stride_d = output.stride(3);
DISPATCH_FUSED_ROPE_TYPES(input.scalar_type(),
cos.scalar_type(),
"dispatch_fused_rope_cached_forward",
dispatch_fused_rope_cached_forward(s,
b,
h,
d,
d2,
stride_s,
stride_b,
stride_h,
stride_d,
o_stride_s,
o_stride_b,
o_stride_h,
o_stride_d,
input.data_ptr<scalar_t_0>(),
cos.data_ptr<scalar_t_1>(),
sin.data_ptr<scalar_t_1>(),
output.data_ptr<scalar_t_0>()););
return output;
}
torch::Tensor bwd_cached_cuda(const torch::Tensor& output_grads,
const torch::Tensor& cos,
const torch::Tensor& sin,
const bool transpose_output)
{
// output_grads sizes: (s, b, h, d)
// s: sequence length
// b: batch size
// h: head num
// d: dim of each head
const int s = output_grads.size(0);
const int b = output_grads.size(1);
const int h = output_grads.size(2);
const int d = output_grads.size(3);
// output_grads strides
const int stride_s = output_grads.stride(0);
const int stride_b = output_grads.stride(1);
const int stride_h = output_grads.stride(2);
const int stride_d = output_grads.stride(3);
// cos/sin's shape is always (s, 1, 1, d2), so the strides are same under
// different memory formats
const int d2 = cos.size(3);
auto act_options = output_grads.options().requires_grad(false);
torch::Tensor input_grads;
if (transpose_output) {
input_grads = torch::empty({b, s, h, d}, act_options).transpose(0, 1);
} else {
input_grads = torch::empty({s, b, h, d}, act_options);
}
const int o_stride_s = input_grads.stride(0);
const int o_stride_b = input_grads.stride(1);
const int o_stride_h = input_grads.stride(2);
const int o_stride_d = input_grads.stride(3);
DISPATCH_FUSED_ROPE_TYPES(
output_grads.scalar_type(),
cos.scalar_type(),
"dispatch_fused_rope_cached_backward",
dispatch_fused_rope_cached_backward(s,
b,
h,
d,
d2,
stride_s,
stride_b,
stride_h,
stride_d,
o_stride_s,
o_stride_b,
o_stride_h,
o_stride_d,
output_grads.data_ptr<scalar_t_0>(),
cos.data_ptr<scalar_t_1>(),
sin.data_ptr<scalar_t_1>(),
input_grads.data_ptr<scalar_t_0>()););
return input_grads;
}
} // end namespace fused_rope
|