File size: 17,612 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Input/output checkpointing."""
import json
import math
import os
import re
import shutil
import time
import random
import sys
import numpy as np
try:
import boto3
except ModuleNotFoundError:
print(
"For s3 checkpointing, please install boto3 either using requirements/requirements-s3.txt or https://github.com/boto/boto3"
)
try:
import hf_transfer
except ModuleNotFoundError:
print(
"For s3 checkpointing, please install hf_transfer either using requirements/requirements-s3.txt or https://github.com/huggingface/hf_transfer"
)
import torch
from glob import glob
from megatron import mpu
from megatron import print_rank_0
from megatron.utils import natural_sort
from megatron.text_generation_utils import get_batch, forward_model
from pathlib import Path
from pprint import pformat
def check_checkpoint_args(neox_args, checkpoint_args):
"""Ensure fixed arguments for a model are the same for the input
arguments and the one retrieved from checkpoint."""
assert isinstance(checkpoint_args, dict), "args stored in checkpoint is a dict"
for checkpoint_arg_name, checkpoint_arg_value in checkpoint_args.items():
args_value = getattr(neox_args, checkpoint_arg_name)
error_message = "{} value from checkpoint ({}) is not equal to the currently set argument value ({}).".format(
checkpoint_arg_name, checkpoint_arg_value, args_value
)
assert checkpoint_arg_value == args_value, error_message
def do_forward_pass(neox_args, model, inference=False):
# set to eval mode
model_was_in_train = model.training
model.eval()
# get context tokens
# always forward full batch size
context_tokens_tensor = (
torch.arange(neox_args.seq_length + 1)
.repeat((neox_args.train_micro_batch_size_per_gpu, 1))
.cuda()
)
# forward
if inference:
tokens, attention_mask, position_ids = get_batch(
neox_args, context_tokens_tensor[:, : neox_args.seq_length]
)
model_inputs = (
tokens,
position_ids,
attention_mask,
torch.Tensor(),
)
logits, _ = forward_model(neox_args, model, model_inputs)
elif neox_args.is_pipe_parallel:
data_iterator = iter([{"text": context_tokens_tensor}])
_, logits = model.eval_batch(data_iter=data_iterator, return_logits=True)
else:
tokens, attention_mask, position_ids = get_batch(
neox_args, context_tokens_tensor[:, : neox_args.seq_length]
)
logits = model((tokens, position_ids, attention_mask))
# reset to train mode, if model was in training before
if model_was_in_train:
model.train()
if logits is not None:
logits = logits.detach().cpu()[
0
] # just return first batch item (they are all equal)
return logits
def check_forward_pass(neox_args, model, checkpoint_logits, inference):
# do forward pass with loaded checkpoint
logits = do_forward_pass(neox_args=neox_args, model=model, inference=inference)
# check
if (
logits is not None and checkpoint_logits is not None
): # this could be the case for non-final pipeline stages
if not (logits == checkpoint_logits).all().item():
if mpu.get_data_parallel_rank() == 0:
print(
" > WARNING: validate_checkpoint_forward() forward after load of checkpoint does not yield exactly same result"
)
assert (
torch.isclose(logits, checkpoint_logits).all().item()
), "validate_checkpoint_forward() forward after load of checkpoint does not yield a close result"
def ensure_directory_exists(filename):
"""Build filename's path if it does not already exists."""
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(dirname)
def get_checkpoint_name(checkpoints_path, iteration, release=False, mp_rank=None):
"""A unified checkpoint name."""
if release:
directory = "release"
else:
directory = "iter_{:07d}".format(iteration)
return os.path.join(
checkpoints_path,
directory,
"mp_rank_{:02d}".format(
mpu.get_model_parallel_rank() if mp_rank is None else mp_rank
),
"model_optim_rng.pt",
)
def get_checkpoint_tag(iteration: int) -> str:
return f"global_step{iteration}"
def delete_old_checkpoints(save_dir, n_to_keep):
if torch.distributed.get_rank() == 0:
ckpt_dir_regex = r"global_step[\d]*"
if save_dir.endswith("/"):
save_dir = save_dir.strip("/")
all_ckpts = natural_sort(
[
i
for i in glob(f"{save_dir}/*")
if os.path.isdir(i) and re.search(ckpt_dir_regex, i)
]
)
n_to_delete = len(all_ckpts) - n_to_keep
if n_to_delete > 0:
to_delete = all_ckpts[:n_to_delete]
print(f"WARNING: Deleting old checkpoints: \n\t{', '.join(to_delete)}")
for ckpt in to_delete:
try:
shutil.rmtree(ckpt)
except FileNotFoundError:
pass
def save_ds_checkpoint(iteration, model, neox_args):
"""Save a model checkpoint."""
sd = {
"iteration": iteration,
"args": {
"num_layers": neox_args.num_layers,
"hidden_size": neox_args.hidden_size,
"num_attention_heads": neox_args.num_attention_heads,
"max_position_embeddings": neox_args.max_position_embeddings,
"make_vocab_size_divisible_by": neox_args.make_vocab_size_divisible_by,
"padded_vocab_size": neox_args.padded_vocab_size,
"tokenizer_type": neox_args.tokenizer_type,
"model_parallel_size": neox_args.model_parallel_size,
},
}
# rng states.
if not neox_args.no_save_rng:
sd["random_rng_state"] = random.getstate()
sd["np_rng_state"] = np.random.get_state()
sd["torch_rng_state"] = torch.get_rng_state()
sd["cuda_rng_state"] = torch.cuda.get_rng_state()
sd["rng_tracker_states"] = mpu.get_cuda_rng_tracker().get_states()
if neox_args.checkpoint_validation_with_forward_pass:
logits = do_forward_pass(neox_args=neox_args, model=model)
sd["checkpoint_validation_logits"] = logits
# checkpoint folder name
tag = get_checkpoint_tag(iteration)
# save checkpoint
model.save_checkpoint(neox_args.save, tag=tag, client_state=sd)
# save config files
if torch.distributed.get_rank() == 0 and neox_args.config_files is not None:
configs_directory = os.path.join(neox_args.save, tag, "configs")
os.makedirs(configs_directory, exist_ok=True)
for config_filename, config_data in neox_args.config_files.items():
with open(os.path.join(configs_directory, config_filename), "w") as f:
if isinstance(config_data, str):
f.write(config_data)
else:
json.dump(config_data, f)
def multiprocessing_starmap(func, args, num_processes=None):
"""Wrapper to allow for re-usable multiprocessing pools with `spawn` context handling
Args:
func (Callable): Function to call
args (Iterable): Iterable of arguments to pass to `func`
num_processes (int, optional): Number of processes to spawn. Defaults to `multiprocessing.cpu_count() - 1`
"""
import multiprocessing
num_processes = num_processes or (multiprocessing.cpu_count() - 1)
with multiprocessing.get_context("spawn").Pool(
processes=num_processes
) as process_pool:
process_pool.starmap(func, args)
process_pool.terminate()
process_pool.join()
del process_pool
def _upload(
file_path: str,
s3_key: str,
chunk_size: int = 104_857_600,
max_files: int = 64,
parallel_failures: int = 63,
max_retries: int = 5,
):
"""Upload local file to S3 using `hf_transfer` library
Args:
file_path (str): Local filename to upload
s3_key (str): S3 key to upload to. E.g. `s3://bucket-name/path/to/file`
chunk_size (int, optional): Chunk size to use for multipart upload.
Defaults to 100MiB = 104_857_600
max_files (int, optional): Number of open file handles, which determines
the maximum number of parallel downloads. Defaults to 64
parallel_failures (int, optional): Number of maximum failures of different
chunks in parallel (cannot exceed max_files). Defaults to 63
max_retries (int, optional): Number of retries for each chunk. Defaults to 5
"""
s3 = boto3.client("s3")
bucket = s3_key.split("s3://")[1].split("/")[0]
key = s3_key.split(bucket)[1].lstrip("/")
# 1. Init multipart upload and obtain unique upload identifier
upload = s3.create_multipart_upload(
ACL="bucket-owner-full-control",
Bucket=bucket,
Key=key,
)
upload_id = upload["UploadId"]
# 2. Generate presigned URLs for each part
file_size = os.stat(file_path).st_size
urls = []
nb_parts = math.ceil(file_size / chunk_size)
for part_number in range(1, nb_parts + 1):
params = {
"Bucket": bucket,
"Key": key,
"PartNumber": part_number,
"UploadId": upload_id,
}
urls.append(
s3.generate_presigned_url(
ClientMethod="upload_part", Params=params, ExpiresIn=86400
)
)
# 3. Upload parts in parallel
responses = hf_transfer.multipart_upload(
file_path=file_path,
parts_urls=urls,
chunk_size=chunk_size,
max_files=max_files,
parallel_failures=parallel_failures,
max_retries=max_retries,
)
# 4. Complete multipart upload request with ETag values
etag_with_parts = []
for part_number, header in enumerate(responses):
etag = header.get("etag")
etag_with_parts.append({"ETag": etag, "PartNumber": part_number + 1})
parts = {"Parts": etag_with_parts}
s3.complete_multipart_upload(
Bucket=bucket, Key=key, MultipartUpload=parts, UploadId=upload_id
)
def upload_checkpoint(iteration, neox_args):
local_checkpoint_path = os.path.join(
os.path.abspath(neox_args.save), get_checkpoint_tag(iteration)
)
local_checkpoint_list = sorted(
filter(
lambda x: os.path.isfile(x),
[str(p) for p in Path(local_checkpoint_path).rglob("*")],
)
)
remote_checkpoint_path = os.path.join(
neox_args.s3_path,
os.path.basename(neox_args.save),
get_checkpoint_tag(iteration),
)
remote_checkpoint_list = [
os.path.join(
remote_checkpoint_path,
os.path.relpath(local_checkpoint, local_checkpoint_path),
)
for local_checkpoint in local_checkpoint_list
]
inputs = zip(
local_checkpoint_list,
remote_checkpoint_list,
[neox_args.s3_chunk_size] * len(local_checkpoint_list),
)
print_rank_0(
f"[RANK {torch.distributed.get_rank()}] Uploading checkpoint `{local_checkpoint_path}` to `{remote_checkpoint_path}`..."
)
start = time.time()
multiprocessing_starmap(_upload, inputs)
total_time = time.time() - start
print_rank_0(
f"[RANK {torch.distributed.get_rank()}] Uploaded checkpoint `{local_checkpoint_path}` to `{remote_checkpoint_path}` in {total_time:.2f}s"
)
def save_checkpoint(neox_args, iteration, model, optimizer, lr_scheduler):
"""Save a model checkpoint."""
if neox_args.deepspeed:
save_ds_checkpoint(iteration, model, neox_args)
else:
raise ValueError("Must be using deepspeed to use neox")
torch.distributed.barrier()
upload_to_s3 = torch.distributed.get_rank() == 0 and neox_args.s3_path is not None
if upload_to_s3:
upload_checkpoint(iteration, neox_args)
# Wait so everyone is done (necessary)
torch.distributed.barrier()
if neox_args.keep_last_n_checkpoints is not None:
delete_old_checkpoints(neox_args.save, neox_args.keep_last_n_checkpoints)
# Wait so everyone is done (not necessary)
torch.distributed.barrier()
def load_checkpoint(
neox_args, model, optimizer, lr_scheduler, inference=False, iteration=None
):
"""Load a model checkpoint and return the iteration."""
if neox_args.deepspeed:
load_optim_and_scheduler = (
not neox_args.no_load_optim
) # TODO: These should be configured by separate args
if neox_args.finetune:
load_optim_and_scheduler = False
if iteration is not None:
tag = get_checkpoint_tag(iteration)
else:
tag = None
checkpoint_name, state_dict = model.load_checkpoint(
neox_args.load,
load_optimizer_states=load_optim_and_scheduler,
load_lr_scheduler_states=load_optim_and_scheduler,
load_module_only=not load_optim_and_scheduler,
tag=tag,
load_module_strict=neox_args.train_impl != "rm",
)
if checkpoint_name is None:
# if an iteration is specified, we want to raise an error here rather than
# continuing silently, since we are trying to load a specific checkpoint
if iteration is not None:
available_checkpoints = sorted(
[
int(i.name.replace("global_step", ""))
for i in Path(neox_args.load).glob("global_step*")
]
)
raise ValueError(
f"Unable to load checkpoint for iteration {iteration}. \nAvailable iterations: {pformat(available_checkpoints)}"
)
if mpu.get_data_parallel_rank() == 0:
print("Unable to load checkpoint.")
return 0 # iteration 0, if not checkpoint loaded
else:
raise ValueError("Must be using deepspeed to use neox")
# Set iteration.
if neox_args.finetune:
iteration = 0
else:
if "iteration" in state_dict:
iteration = state_dict["iteration"]
else:
iteration = state_dict.get(
"total_iters"
) # total_iters backward compatible with older checkpoints
if iteration is None:
raise ValueError(
f"Unable to load iteration from checkpoint {checkpoint_name} with keys {state_dict.keys()}, exiting"
)
# Check arguments.
if "args" in state_dict:
checkpoint_args = state_dict["args"]
check_checkpoint_args(neox_args=neox_args, checkpoint_args=checkpoint_args)
print_rank_0(
" > validated currently set args with arguments in the checkpoint ..."
)
else:
print_rank_0(" > could not find arguments in the checkpoint for validation...")
# Check loaded checkpoint with forward pass
if neox_args.checkpoint_validation_with_forward_pass:
if "checkpoint_validation_logits" in state_dict:
check_forward_pass(
neox_args=neox_args,
model=model,
checkpoint_logits=state_dict["checkpoint_validation_logits"],
inference=inference,
)
print_rank_0(" > validated loaded checkpoint with forward pass ...")
else:
if mpu.get_data_parallel_rank() == 0:
print(
" > WARNING: checkpoint_validation_with_forward_pass is configured but no checkpoint validation data available in checkpoint {}".format(
checkpoint_name
)
)
# rng states.
if not neox_args.finetune and not neox_args.no_load_rng:
try:
random.setstate(state_dict["random_rng_state"])
np.random.set_state(state_dict["np_rng_state"])
torch.set_rng_state(state_dict["torch_rng_state"])
torch.cuda.set_rng_state(state_dict["cuda_rng_state"])
mpu.get_cuda_rng_tracker().set_states(state_dict["rng_tracker_states"])
except KeyError:
print_rank_0(
"Unable to load optimizer from checkpoint {}. "
"Specify --no-load-rng or --finetune to prevent "
"attempting to load the optimizer state, "
"exiting ...".format(checkpoint_name)
)
sys.exit()
torch.distributed.barrier()
if mpu.get_data_parallel_rank() == 0:
print(" successfully loaded {}".format(checkpoint_name))
return iteration
|