File size: 50,344 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
Arguments for gpt-neox. All of the following can be specified in your .yml config file(s):


## NeoXArgsLRScheduler

LR Scheduler Arguments



- **lr_decay_style**: typing.Literal['constant', 'linear', 'cosine', 'exponential']

    Default = linear

    Learning rate decay function. Choose from 'constant', 'linear', 'cosine', 'exponential'.


- **lr_decay_iters**: int

    Default = None

    Number of iterations to decay learning rate over. If None, defaults to 
    --train-iters or the equivalent inferred value from train_epochs.

- **lr_decay_fraction**: float

    Default = None

    Effective fraction of training over which to decay lr. Overrides lr_decay_iters. 
    Useful when specifying train_epochs.

- **min_lr**: float

    Default = 0.0

    Minimum value for learning rate. The scheduler clips values below this threshold.



- **warmup**: float

    Default = 0.01

    Percentage of total iterations to warmup on (.01 = 1 percent of all training iters).



- **override_lr_scheduler**: bool

    Default = False

    Reset the values of the scheduler (learning rate,warmup iterations, minimum learning rate, maximum number of iterations, and decay style from input arguments and ignore values from checkpoints. Note that all the above values will be reset.



- **use_checkpoint_lr_scheduler**: bool

    Default = False

    Use checkpoint to set the values of the scheduler (learning rate, warmup iterations, minimum learning rate, maximum number of iterations, and decay style from checkpoint and ignore input arguments.



## NeoXArgsLogging

Logging Arguments



- **use_wandb**: bool

    Default = None

    Flag indicating if wandb is to be used.



- **wandb_group**: str

    Default = None

    Weights and Biases group name - used to group together "runs".



- **wandb_team**: str

    Default = None

    Team name for Weights and Biases.



- **wandb_project**: str

    Default = neox

    wandb project name



- **wandb_host**: str

    Default = https://api.wandb.ai

    url of the wandb host



- **wandb_init_all_ranks**: bool

    Default = False

    Initialize wandb on all ranks.



- **git_hash**: str

    Default = 62c9738a

    current git hash of repository



- **log_dir**: str

    Default = None

    Directory to save logs to.



- **tensorboard_dir**: str

    Default = None

    Write TensorBoard logs to this directory.



- **use_comet**: bool

    Default = None

    Flag indicating if comet is to be used.



- **comet_workspace**: Optional

    Default = None

    Comet workspace name, if not configured Comet Experiments will be created in the user configured default workspace.



- **comet_project**: Optional

    Default = None

    Comet project name, if not configured Comet Experiments will be created in the Uncategorized Experiments project.



- **comet_experiment_name**: Optional

    Default = None

    Custom name for the Comet experiment. If not provided, a random name is used.



- **comet_tags**: Optional

    Default = None

    List of tags to attach to the created Comet Experiment.



- **comet_others**: Optional

    Default = None

    Custom metadata to attach to the created Comet Experiment.



- **log_interval**: int

    Default = 100

    Interval between logging.



- **log_grad_pct_zeros**: bool

    Default = False

    Log the percentage of zeros for the gradient of each parameter to wandb / tensorboard (useful for debugging). Needs wandb_init_all_ranks set to True if using pipeline parallelism to log all ranks.



- **log_param_norm**: bool

    Default = False

    Log the frob norm of the parameters to wandb / tensorboard (useful for debugging). Needs wandb_init_all_ranks set to True if using pipeline parallelism to log all ranks.



- **log_grad_norm**: bool

    Default = False

    Log the frob norm of the gradients to wandb / tensorboard (useful for debugging).
    (N.B - this will only work with pp = 0 for now, as we don't have access to the gradients of the model because
    deepspeed.)



- **log_optimizer_states**: bool

    Default = False

    Log the frob norm of the optimizer states to wandb / tensorboard (useful for debugging).



- **log_gradient_noise_scale**: bool

    Default = False

    Whether to log the gradient noise scale when training (cf. https://arxiv.org/abs/1812.06162 for explanation)



- **gradient_noise_scale_n_batches**: int

    Default = 5

    Number of batches to accumulate gradients for in the gradient noise scale logger.



- **gradient_noise_scale_cpu_offload**: bool

    Default = False

    Whether to offload the buffered gradients to cpu when measuring gradient noise scale.



- **memory_profiling**: bool

    Default = False

    Whether to take a memory snapshot of the model. Useful for debugging memory issues.



- **memory_profiling_path**: str

    Default = None

    Path to save memory snapshot to.



- **profile**: bool

    Default = False

    Enable nsys profiling. When using this option,
    nsys options should be specified in commandline.
    An example nsys commandline is
    ```
    nsys profile -s none -t nvtx,cuda -o <path/to/output_file>
    --force-overwrite true
    --capture-range=cudaProfilerApi
    --capture-range-end=stop
    ```



- **profile_step_start**: int

    Default = 10

    Step to start profiling at.



- **profile_step_stop**: int

    Default = 12

    Step to stop profiling at.



## NeoXArgsModel

Model Arguments



- **precision**: typing.Literal['fp16', 'fp32', 'bfloat16']

    Default = None

    description of the used precision, either one of fp16 or fp32 (and in the future bf16).



- **num_layers**: int

    Default = None

    Number of transformer layers.



- **hidden_size**: int

    Default = None

    Transformer hidden size.



- **intermediate_size**: int

    Default = None

    Transformer intermediate size. Default = 4h



- **mlp_multiple_of**: int

    Default = 1

    force mlp size to be a multiple of this value



- **expansion_factor**: float

    Default = None

    Transformer intermediate size. Default = 4



- **num_attention_heads**: int

    Default = None

    Number of transformer attention heads.

    If num_kv_heads is set, will control only number of query heads.



- **num_kv_heads**: int

    Default = None

    Number of transformer key/value attention heads.

    If set to None or the same value as num_attention_heads, will perform multi-head attention (MHA).
    If set to < num_attention_heads but > 1, will perform grouped-query attention (GQA) (https://arxiv.org/pdf/2305.13245.pdf)
    If set to 1, will perform multi-query attention.

    Must be < num_attention_heads and divide num_attention_heads evenly.



- **seq_length**: int

    Default = None

    Maximum sequence length to process.



- **sliding_window_width**: int

    Default = None

    Width of the attention sliding window. Only supported with Flash Attention 2.



- **max_position_embeddings**: int

    Default = None

    Maximum number of position embeddings to use. This is the size of position embedding.



- **norm**: typing.Literal['layernorm', 'rmsnorm', 'scalenorm', 'te_rmsnorm', 'te_layernorm']

    Default = layernorm

    Normalization layer to use. Choose from "layernorm", "rmsnorm", "scalenorm", "te_rmsnorm", "te_layernorm".



- **layernorm_fusion**: bool

    Default = False

    Use fused layer norm kernel (if `norm` is `layernorm`).



- **rmsnorm_fusion**: bool

    Default = False

    Use fused RMS norm kernel (if `norm` is `rmsnorm`).



- **use_qk_layernorm**: bool

    Default = False

    Use QK Normalization



- **layernorm_epsilon**: float

    Default = 1e-05

    Layer norm epsilon.



- **rms_norm_epsilon**: float

    Default = 1e-08

    Root mean squared norm epsilon



- **scalenorm_epsilon**: float

    Default = 1e-08

    Scalenorm epsilon



- **pos_emb**: typing.Literal['learned', 'rotary', 'sinusoidal', 'rpe', 'alibi', 'none']

    Default = learned

    Type of positional embedding to use - choose from 'learned', 'rotary', 'sinusoidal', 'rpe', 'none'



- **rpe_num_buckets**: int

    Default = 32

    T5 relative positional encoding number of buckets, default 32.



- **rpe_max_distance**: int

    Default = 128

    T5 relative positional encoding max distance, default 128.



- **opt_pos_emb_offset**: int

    Default = 0

    Learned position embedding offset (only used by OPT, where it should be set to 2).



- **no_weight_tying**: bool

    Default = False

    Disables weight tying between embedding weights and final Linear layer



- **attention_config**: list

    Default = None

    Attention configuration for gpt-neox

    The first item in the list specifies the attention type(s), and should be a list of strings. The second item
    specifies the number of times to repeat those attention types in the full list.

    attention type choices:  [global, local, sparse_fixed, sparse_variable, bslongformer, bigbird, "gmlp", "amlp", "flash", "mamba", "rwkv"]

    So a 12 layer network with only global attention could be specified like:
        [[[`global`], 12]]

    or a 12 layer network with alternating global / local like:
        [[[`global`, `local`], 6]]

    If none is specified, this defaults to
        [[[`global`], n_layers]]



- **sparsity_config**: dict

    Default = None

    Sparsity configuration dict as defined in https://www.deepspeed.ai/docs/config-json/#sparse-attention

    Note that since neox is autoregressive, attention is always "unidirectional" and `horizontal_global_attention` is
    always false.

    The main difference between our sparsity config and deepspeed's is that `mode` is ignored - since it is instead
    specified in attention_config defining each layer.

    An example config is given below:
          "sparse_attention": {
            "block": 16,
            "different_layout_per_head": true,
            "num_local_blocks": 4,
            "num_global_blocks": 1,
            "num_different_global_patterns": 4,
            "num_random_blocks": 0,
            "local_window_blocks": [4],
            "global_block_indices": [0],
            "global_block_end_indices": None,
            "num_sliding_window_blocks": 3
          }



- **num_unique_layers**: int

    Default = None

    Number of unique transformer layers. num-layers should be divisible by this value. Currently only has an effect when pipe_parallel_size=0.



- **param_sharing_style**: str

    Default = grouped

    Ordering of the shared parameters. For example, for a num-layers=4 and --num-unique-layers=2, we will have the following ordering for two unique layers 1 and 2-: grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].



- **make_vocab_size_divisible_by**: int

    Default = 128

    Pad the vocab size to be divisible by this value. This is added for computational efficiency reasons.



- **activation**: typing.Literal['gelu', 'geglu', 'relu', 'softsign', 'swish', 'mish', 'silu', 'reglu', 'swiglu', 'bilinear', 'glu']

    Default = gelu

    Activation function to use - choose from ["gelu", "geglu", "relu", "softsign", "swish", "mish", "silu", "reglu", "swiglu", "bilinear", "glu"]



- **use_flashattn_swiglu**: bool

    Default = False

    Use flash attention's version of swiglu



- **scaled_upper_triang_masked_softmax_fusion**: bool

    Default = False

    Enable fusion of query_key_value_scaling time (upper diagonal) masking and softmax.



- **scaled_masked_softmax_fusion**: bool

    Default = False

    Enable fusion of query_key_value_scaling general masking and softmax.



- **bias_gelu_fusion**: bool

    Default = False

    Enable bias and gelu fusion.



- **bias_dropout_fusion**: bool

    Default = False

    Enable bias and dropout fusion.



- **rope_fusion**: bool

    Default = False

    Enable rotary embedding fusion.



- **fp16_lm_cross_entropy**: bool

    Default = False

    Move the cross entropy unreduced loss calculation for lm head to fp16.



- **init_method_std**: float

    Default = 0.02

    Standard deviation of the zero mean normal distribution used for weight initialization.



- **apply_query_key_layer_scaling**: bool

    Default = False

    Scale Q * K^T by 1 / layer-number. If this flag is set, then it will automatically set attention-softmax-in-fp32 to true



- **use_cpu_initialization**: bool

    Default = False

    If set, affine parallel weights initialization uses CPU



- **attention_softmax_in_fp32**: bool

    Default = False

    Run attention masking and softmax in fp32.



- **rotary_pct**: float

    Default = 1.0

    pct of hidden dims to apply rotary positional embedding to



- **rotary_emb_base**: int

    Default = 10000

    Base for rotary positional embedding



- **rotary_save_freqs_buffer**: bool

    Default = False

    Used to control whether the `inv_freqs` buffer in rotary embeddings
    will be stored in checkpoints (persistent=True) or not.

    Defaults to false, but is left configurable to maintain backward-compatibility
    with GPT-NeoX checkpoints that were trained with this flag.



- **init_method**: typing.Literal['normal', 'scaled_normal', 'orthogonal', 'scaled_orthogonal', 'xavier_uniform', 'xavier_normal', 'wang_init', 'small_init', 'single_residual_scaled_normal']

    Default = normal

    Init function used on all layers except ff residual outputs - choose from
    ["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]



- **output_layer_init_method**: typing.Literal['normal', 'scaled_normal', 'orthogonal', 'scaled_orthogonal', 'xavier_uniform', 'xavier_normal', 'wang_init', 'small_init', 'single_residual_scaled_normal']

    Default = scaled_normal

    Init function used for ff residual outputs - choose from
    ["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]



- **gmlp_attn_dim**: int

    Default = 64

    the dimension of the single head self attention in gmlp model (not used in gpt models).
    If None - gmlp model doesn't use attention.



- **gpt_j_residual**: bool

    Default = False

    If false, we use the conventional residual path:
      x = x + attn(ln1(x))
      x = x + mlp(ln2(x))
    Otherwise, we use the residual path from GPT-J, which offers a slight speedup:
      x = ln(x)
      x = x + attn(x) + mlp(x)



- **gpt_j_tied**: bool

    Default = False

    If false, we use
      x = x + attn(ln1(x)) + mlp(ln2(x))
    Otherwise, we tie the layer norms
      y = ln(x)
      x = x + attn(y) + mlp(y)



- **use_bias_in_norms**: bool

    Default = True

    If false, norms (e.g. LayerNorm) will not have bias terms



- **use_bias_in_attn_linear**: bool

    Default = True

    If false, attn_linear (e.g. QKVO) will not have bias terms



- **use_bias_in_mlp**: bool

    Default = True

    If false, mlps will not have bias terms



- **soft_prompt_tuning**: dict

    Default = None

    Dictionary configuring the soft prompt tuning parameters.
    If enabled, will train *only* the soft prompt, and freezes the rest of the model.
    parameters in the dict are:
        'enabled': bool = True # enables soft prompting
        'num_tokens': int = 10 # length of the soft prompt in tokens
        'init_string': str = '' # if provided, initialize the soft prompt with the word embeddings of this string
        'init_range': float = 0.5 # if no init string is provided, initialize the soft prompt with a uniform distribution between -init_range and init_rang



- **mamba_selective_scan_fusion**: bool

    Default = False

    Enable fused kernels for Mamba selective scan.



- **mamba_causal_conv_fusion**: bool

    Default = False

    Enable fused kernels for Mamba causal Conv1d.



- **mamba_inner_func_fusion**: bool

    Default = False

    Enable fused inner operator for Mamba. (Supersedes conv. and selective scan fusion flags, requires each of those kernels to be installed.)



- **mamba_selective_fp32_params**: bool

    Default = True

    Keep selected parameters in fp32 for Mamba (A and D).
    Requires https://github.com/EleutherAI/DeeperSpeed/pull/61 .



- **mamba_use_bias_in_conv**: bool

    Default = True

    If false, conv1d in mamba block will not have bias term



- **mamba_use_bias_in_linears**: bool

    Default = False

    Enable bias terms in mamba block up- and down- projections (in_proj and out_proj).



- **output_layer_parallelism**: typing.Literal['column']

    Default = column

    Parameter controlling whether the output layer is parallelized over the hidden dim (row) or the vocab dim (column)



- **dim_att**: int

    Default = None

    Total dimension of the attention mechanism for RWKV. If not set, defaults to hidden_size.



- **head_size**: int

    Default = None

    Size of each attention head for RWKV. Calculated as dim_att // num_attention_heads.



- **ffn_dim**: int

    Default = None

    Dimension of the feed-forward network for RWKV. If not set, calculated based on hidden_size and expansion_factor.


## NeoXArgsOptimizer

Optimizer Arguments



- **optimizer_type**: typing.Literal['adam', 'onebitadam', 'cpu_adam', 'cpu_torch_adam', 'sm3', 'madgrad_wd', 'sgd', 'lion']

    Default = adam

    Type of optimizer to use. Choose from ['adam', 'onebitadam', 'cpu_adam', 'cpu_torch_adam', 'sm3', 'madgrad_wd', 'sgd', 'lion']
    NOTE: sgd will use MuSGD from Mup. Mup must be enabled for this optimizer.



- **use_bnb_optimizer**: bool

    Default = False

    Whether to enable the bitsandbytes optimizers



- **zero_stage**: typing.Union[int, typing.List[int], typing.Literal['all']]

    Default = None

    Zero Optimizer stage



- **zero_reduce_scatter**: bool

    Default = None

    Zero: Uses reduce or reduce scatter instead of allreduce to average gradients



- **zero_contiguous_gradients**: bool

    Default = None

    Zero: Copies the gradients to a contiguous buffer as they are produced. Avoids memory fragmentation during backward pass. Only useful when running very large models.



- **zero_reduce_bucket_size**: int

    Default = None

    Zero: Number of elements reduced/allreduced at a time. Limits the memory required for the allgather for large model sizes



- **zero_allgather_bucket_size**: int

    Default = None

    Zero: Number of elements allgathered at a time. Limits the memory required for the allgather for large model sizes



- **lr**: float

    Default = None

    Max Learning rate during training



## NeoXArgsOther

Misc. Arguments



- **distributed_backend**: str

    Default = nccl

    Which backend to use for distributed training.



- **local_rank**: int

    Default = None

    local rank passed from distributed launcher.



- **rank**: int

    Default = None

    global rank of process being run (passed in via distributed launcher)



- **lazy_mpu_init**: bool

    Default = False

    If set to True, initialize_megatron() skips DDP initialization and returns function to complete it instead. Also turns on use-cpu-initialization flag. This is for external DDP manager.



- **short_seq_prob**: float

    Default = 0.1

    Probability of producing a short sequence.



- **eod_mask_loss**: bool

    Default = False

    Mask loss for the end of document tokens.



- **adlr_autoresume**: bool

    Default = False

    Enable auto-resume on adlr cluster.



- **adlr_autoresume_interval**: int

    Default = 1000

    Intervals over which check for auto-resume termination signal



- **seed**: int

    Default = 1234

    Random seed used for python, numpy, pytorch, and cuda.



- **onnx_safe**: bool

    Default = False

    Use workarounds for known problems with Torch ONNX exporter



- **deepscale**: bool

    Default = False

    (Deprecated) enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)'



- **deepscale_config**: str

    Default = None

    (Deprecated) deepscale json configuration file.



- **deepspeed_mpi**: bool

    Default = False

    Run via MPI, this will attempt to discover the necessary variables to initialize torch distributed from the MPI environment



- **deepspeed_slurm**: bool

    Default = False

    Run via SLURM, this will attempt to discover the necessary variables to initialize torch distributed from the SLURM environment



- **user_script**: str

    Default = None

    user script to be run



- **iteration**: int

    Default = None

    Set during training



- **do_train**: bool

    Default = None

    Set during training



- **do_valid**: bool

    Default = None

    Set during training



- **do_test**: bool

    Default = None

    Set during training



- **save_iters**: list

    Default = None

    Set during training



- **global_num_gpus**: int

    Default = None

    Set during launching



## NeoXArgsParallelism

Parallelism Arguments



- **pipe_parallel_size**: int

    Default = 0

    Number of pipeline parallel stages. Disable with 0.



- **model_parallel_size**: int

    Default = 1

    Size of the model parallelism.



- **pipe_partition_method**: str

    Default = type:transformer|mlp

    method used to distribute model layers across pipeline stages. Choose from "parameters", which balances the number
    of parameters on each pipeline stage, "uniform", which naively balances the number of layers per stage, or
    "type:[regex]", which balances layers whose class names match [regex]



- **world_size**: int

    Default = None

    Total world size (i.e number of gpus in cluster). Configured post-launch using distributed launcher



- **is_pipe_parallel**: bool

    Default = False

    flag to determine whether pipeline parallelism is on - shouldn't be set by user, is automatically determined
    according to pipeline parallel size.



- **sequence_parallel**: bool

    Default = False

    flag to determine whether Megatron-style Sequence Parallelism (https://arxiv.org/abs/2205.05198)
    (Layernorm inputs and activations are sharded across model parallel group) will be used. Has no effect when model_parallel_size is 1.
    **Set by user, in contrast to neox_args.is_pipe_parallel.**



- **expert_interval**: int

    Default = 2

    Have one MoE layer every expert_interval layers



## NeoXArgsTemplate

NeoXArgsTemplate()



## NeoXArgsTextgen

Text Generation arguments



- **text_gen_type**: str

    Default = None

    How to generate text/sample the model.
    Options: `unconditional`, `input-file`, `interactive`, `precompute`



- **precompute_model_name**: str

    Default = None

    Model name to use for saving precomputed logprobs



- **temperature**: float

    Default = 0.0

    exponential scaling output distribution ("higher == more risk")



- **top_p**: float

    Default = 0.0

    Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p.



- **top_k**: int

    Default = 0

    integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token.



- **return_logits**: bool

    Default = False

    Boolean for whether to return the logits for generated tokens



- **maximum_tokens**: int

    Default = 64

    maximum number of tokens to be generated



- **prompt_end**: str

    Default = 


    a single prompt's end. Defaults to newline



- **sample_input_file**: str

    Default = None

    Get input from file instead of interactive mode, each line is an input.



- **sample_output_file**: str

    Default = samples.txt

    Output file



- **num_samples**: int

    Default = 1

    Number of samples to generate unconditionally, defaults to 1 and interactive conditional sampling



- **recompute**: bool

    Default = False

    During generation recompute all attention instead of using previously computed keys/values.
    Should be set to true for sparse attention models



- **eval_results_prefix**: str

    Default = 

    prefix to which to save evaluation results - final fp will be {eval_results_prefix}_eval_results_yy-mm-dd-HH-MM.json



- **eval_tasks**: list

    Default = None

    Tasks to evaluate on using lm_eval_harness

    NOTE: Requires internet connection



- **moe_top_k**: int

    Default = 1

    Activate top K experts in MoE



- **use_tutel**: bool

    Default = False

    Use Tutel optimizations in MoE



- **moe_num_experts**: int

    Default = 1

    Number of MoE experts



- **moe_loss_coeff**: float

    Default = 0.1

    Coefficient for MoE loss



- **moe_train_capacity_factor**: float

    Default = 1.0

    The capacity of the expert at train time



- **moe_eval_capacity_factor**: float

    Default = 1.0

    The capacity of the expert at eval time



- **moe_min_capacity**: int

    Default = 4

    The minimum capacity per expert regardless of the capacity_factor



- **moe_token_dropping**: bool

    Default = False

    Whether to drop tokens when exceeding capacity



- **create_moe_param_group**: bool

    Default = True

    Whether to create a separate parameter group for MoE parameters



- **moe_use_residual**: bool

    Default = True

    Whether to use residual in MoE



- **moe_expert_parallel_size**: int

    Default = 1

    Number of parallel experts in MoE



- **moe_type**: str

    Default = megablocks

    Either `deepspeed` or `megablocks`



- **moe_glu**: bool

    Default = False

    Use gated linear units in MoE



- **moe_lbl_in_fp32**: bool

    Default = False

    Whether to compute the load balancing loss in fp32.



- **moe_jitter_eps**: float

    Default = None

    Coefficient for MoE routing jitter. Jitter is
    not used if set to None



- **enable_expert_tensor_parallelism**: bool

    Default = False

    Enable expert tensor parallelism



## NeoXArgsTokenizer

Tokenizer Arguments



- **tokenizer_type**: typing.Literal['GPT2BPETokenizer', 'HFTokenizer', 'HFGPT2Tokenizer', 'SPMTokenizer', 'CharLevelTokenizer', 'TiktokenTokenizer']

    Default = GPT2BPETokenizer

    Type of tokenizer to use - should be one of ["GPT2BPETokenizer", "HFTokenizer", "HFGPT2Tokenizer", "SPMTokenizer", "CharLevelTokenizer", "TiktokenTokenizer"]



- **padded_vocab_size**: int

    Default = None

    Total (padded) vocabulary size of tokenizer. Configured after launching of training,
    as it's dependent on the parallelism size.



## NeoXArgsTraining

Training Arguments



- **data_path**: str

    Default = None

    Path to combined dataset to split.



- **use_shared_fs**: bool

    Default = True

    Whether to use a shared filesystem for data loading. If False, local rank 0 on all nodes will preprocess the data,
    otherwise only global rank 0 will preprocess the data. This is implemented in megatron/data/gpt2_dataset.py::_build_index_mappings.



- **train_data_paths**: list

    Default = None

    List of paths to train datasets.



- **train_label_data_paths**: list

    Default = None

    List of paths to train label datasets (not shifted by 1 yet!).



- **train_reward_data_paths**: list

    Default = None

    List of paths to train reward datasets



- **test_data_paths**: list

    Default = None

    List of paths to test datasets.



- **test_label_data_paths**: list

    Default = None

    List of paths to test label datasets (not shifted by 1 yet!).



- **test_reward_data_paths**: list

    Default = None

    List of paths to test reward datasets



- **valid_data_paths**: list

    Default = None

    List of paths to validation datasets.



- **valid_label_data_paths**: list

    Default = None

    List of paths to validation label datasets (not shifted by 1 yet!).



- **valid_reward_data_paths**: list

    Default = None

    List of paths to validation reward datasets



- **pos_train_data_paths**: list

    Default = None

    



- **neg_train_data_paths**: list

    Default = None

    List of paths to positive and negative training datasets.



- **pos_train_label_data_paths**: list

    Default = None

    



- **neg_train_label_data_paths**: list

    Default = None

    List of paths to positive and negative training label datasets (not shifted by 1 yet!).



- **pos_valid_data_paths**: list

    Default = None

    



- **neg_valid_data_paths**: list

    Default = None

    List of paths to positive and negative validation datasets.



- **pos_valid_label_data_paths**: list

    Default = None

    



- **neg_valid_label_data_paths**: list

    Default = None

    List of paths to positive and negative validation label datasets (not shifted by 1 yet!).



- **pos_test_data_paths**: list

    Default = None

    



- **neg_test_data_paths**: list

    Default = None

    List of paths to positive and negative test datasets.



- **pos_test_label_data_paths**: list

    Default = None

    



- **neg_test_label_data_paths**: list

    Default = None

    List of paths to positive and negative test label datasets (not shifted by 1 yet!).



- **train_data_weights**: list

    Default = None

    List of 'weights' that decide how often to sample from each training dataset when blending datasets. If None, defaults to equal weighting.
    Should be a list the same length as `train_data_paths`



- **valid_data_weights**: list

    Default = None

    List of 'weights' that decide how often to sample from each validation dataset when blending datasets. If None, defaults to equal weighting.
    Should be a list the same length as `valid_data_paths`



- **test_data_weights**: list

    Default = None

    List of 'weights' that decide how often to sample from each test dataset when blending datasets. If None, defaults to equal weighting.
    Should be a list the same length as `test_data_paths`



- **weight_by_num_documents**: bool

    Default = False

    If True, Builds dataset weights from a multinomial distribution over groups of data according to the number of
    documents in each group.

    WARNING: setting this to True will override any user provided weights

    We sample from a group according to the probability p(L) ∝ |L| ** α,
    where p(L) is the probability of sampling from a given group,
          |L| is the number of examples in that datapoint,
          and α is a coefficient that acts to upsample data from underrepresented groups

    Hence α (`alpha`) allows us to control how much to 'boost' the probability of training on low-resource groups.

    See https://arxiv.org/abs/1911.02116 for more details



- **weighted_sampler_alpha**: float

    Default = 1.0

    Alpha value for `weight_by_num_documents`. Only has an effect if `weight_by_num_documents` = True.

    when alpha = 1, the probability of sampling from a given group = n_samples / total_samples
    as alpha -> 0, the probability of sampling from all groups becomes equal, and number of documents has no effect
    as alpha -> inf, the probability of sampling from the groups with *the most samples* -> 1



- **data_impl**: typing.Literal['infer', 'mmap', 'cached']

    Default = infer

    Implementation of indexed datasets, can be one of "infer", "cached", or "mmap"



- **pack_impl**: typing.Literal['packed', 'pack_until_overflow', 'unpacked']

    Default = packed

    Packing implementation, can be one of "packed", "pack_until_overflow", or "unpacked".

    warning: pack_until_overflow is very naive and will likely have issues with pretraining scale datasets



- **dataset_impl**: typing.Literal['gpt2', 'pairwise']

    Default = gpt2

    Dataset implementation, can be one of "gpt2" or "pairwise"



- **train_impl**: typing.Literal['normal', 'dpo', 'rm', 'kto']

    Default = normal

    Training implementation, can be one of "normal", "dpo", "kto", or "rm"



- **dpo_fp32**: bool

    Default = True

    Whether to cast logits to fp32 for DPO loss calculation.



- **dpo_reference_free**: bool

    Default = False

    Whether to use reference-free DPO.



- **dpo_beta**: float

    Default = 0.1

    Beta value for DPO



- **kto_fp32**: bool

    Default = True

    Whether to cast logits to fp32 for KTO loss calculation.



- **kto_desirable_weight**: float

    Default = 1.0

    Weight for desirable loss in KTO. Might help if you have unbalanced desirable and undesirable classes.



- **kto_undesirable_weight**: float

    Default = 1.0

    Weight for undesirable loss in KTO. Might help if you have unbalanced desirable and undesirable classes.



- **kto_beta**: float

    Default = 0.1

    Beta value for KTO



- **allow_chopped**: bool

    Default = True

    WARNING: if your packing impl is packed, this is ignored.

    Allow chopped samples in the dataset.
    (e.g if your sequence length is 1024 and you have a sample of length 1026, it will be chopped to 1024)



- **mmap_warmup**: bool

    Default = False

    Warm up mmap files.



- **save**: str

    Default = None

    Output directory to save checkpoints to.



- **s3_path**: str

    Default = None

    Path to s3 bucket for saving checkpoints.



- **s3_chunk_size**: int

    Default = 104857600

    The number of bytes in each file chunk when uploading to s3. Defaults to 100MiB.



- **config_files**: dict

    Default = None

    Store of original config files mapping config filename to file contents



- **load**: str

    Default = None

    Directory containing a model checkpoint.



- **checkpoint_validation_with_forward_pass**: bool

    Default = False

    save input and output of a forward pass with the checkpoint and validate after load



- **checkpoint_scale**: typing.Literal['linear', 'log']

    Default = linear

    How step at which checkpoints are saved should scale. "linear" implies 1 checkpoint will be saved at every multiple of `checkpoint-factor`,
    while "log" implies that the number of steps between each checkpoint will be multiplied by `checkpoint-factor` at each step, starting from step 1.



- **checkpoint_factor**: int

    Default = None

    Acts as a multiplier on either the "log" or "linear" checkpoint spacing.

    With `checkpoint-scale="linear"`, `checkpoint-factor=20`, and `train-iters=100`, checkpoints will be saved at
    steps [20, 40, 60, 80, 100].

    With `checkpoint-scale="log"`, `checkpoint-factor=2`, and `train-iters=100`, checkpoints will be saved at
    steps [1, 2, 4, 8, 16, 32, 64, 100].

    Note that the last checkpoint step is always saved.



- **extra_save_iters**: list

    Default = None

    Additional iterations when a checkpoint should be saved.
    Must be a list of ints or `None`.



- **no_save_optim**: bool

    Default = False

    Do not save current optimizer.



- **no_save_rng**: bool

    Default = False

    Do not save current rng state.



- **no_load_optim**: bool

    Default = False

    Do not load optimizer when loading checkpoint.



- **no_load_rng**: bool

    Default = False

    Do not load rng state when loading checkpoint.



- **finetune**: bool

    Default = False

    Load model for finetuning. Do not load optimizer or rng state from checkpoint and set iteration to 0. Assumed when loading a release checkpoint.



- **batch_size**: int

    Default = None

    training microbatch size per gpu



- **train_iters**: int

    Default = None

    Number of iterations to run for training.



- **train_epochs**: int

    Default = None

    Number of epochs to run for training. Do not specify both train_epochs and train_iters.
    Not currently compatible with data reweighing, pairwise datasets, and packing other than 'packed'



- **eval_iters**: int

    Default = 100

    Number of iterations to run for evaluation validation/test for.



- **keep_last_n_checkpoints**: int

    Default = None

    Number of last checkpoints to keep



- **eval_interval**: int

    Default = 1000

    Interval between running evaluation on validation set.



- **split**: str

    Default = 969, 30, 1

    Comma_separated list of proportions for training, validation, and test split. For example the split 90,5,5 will use 90% of data for training, 5% for validation and 5% for test.



- **vocab_file**: str

    Default = None

    Path to the vocab file.



- **merge_file**: str

    Default = None

    Path to the BPE merge file.



- **num_workers**: int

    Default = 2

    Dataloader number of workers.



- **exit_interval**: int

    Default = None

    Exit the program after the iteration is divisible by this value.



- **attention_dropout**: float

    Default = 0.0

    Post attention dropout probability.



- **hidden_dropout**: float

    Default = 0.0

    Dropout probability for hidden state transformer.



- **weight_decay**: float

    Default = 0.1

    Weight decay coefficient for L2 regularization.



- **checkpoint_activations**: bool

    Default = False

    Checkpoint activation to allow for training with larger models, sequences, and batch sizes.



- **checkpoint_num_layers**: int

    Default = 1

    Chunk size (number of layers) for checkpointing.



- **deepspeed_activation_checkpointing**: bool

    Default = True

    DEPRECATED - TODO: remove
    Uses activation checkpointing from deepspeed



- **contiguous_checkpointing**: bool

    Default = False

    Contiguous memory checkpointing for activations.



- **checkpoint_in_cpu**: bool

    Default = False

    Move the activation checkpoints to CPU.



- **synchronize_each_layer**: bool

    Default = False

    does a synchronize at the beginning and end of each checkpointed layer.



- **profile_backward**: bool

    Default = False

    Enables backward pass profiling for checkpointed layers.



- **partition_activations**: bool

    Default = False

    Partition Activations across GPUs before checkpointing.



- **clip_grad**: float

    Default = 1.0

    Gradient clipping based on global L2 norm.



- **hysteresis**: int

    Default = 2

    hysteresis for dynamic loss scaling



- **dynamic_loss_scale**: bool

    Default = None

    flag indicating whether dynamic loss scale is used



- **loss_scale**: float

    Default = None

    Static loss scaling, positive power of 2
    values can improve fp16 convergence. If None, dynamic loss scaling is used.



- **loss_scale_window**: float

    Default = 1000.0

    Window over which to raise/lower dynamic scale.



- **min_scale**: float

    Default = 1.0

    Minimum loss scale for dynamic loss scale.



- **char_level_ppl**: bool

    Default = False

    Whether to calculate character level perplexity as well as token level perplexity. (may incur a time cost)



- **use_mup**: bool

    Default = False

    Whether to use Microsoft's Mup https://github.com/microsoft/mup



- **coord_check**: bool

    Default = False

    Whether to generate a "coord check" plot to verify mup's implementation in neox



- **save_base_shapes**: bool

    Default = False

    Whether to save base shapes for mup. This will save the shapes to the path specified in base-shapes-file.



- **base_shapes_file**: str

    Default = None

    Path to the base shapes to save to/load from



- **mup_init_scale**: float

    Default = 1.0

    Initialization scale: All the parameters are multiplied by this value



- **mup_attn_temp**: float

    Default = 1.0

    Attention temperature: Reciprocal of the multiplier applied to the input to attention softmax



- **mup_output_temp**: float

    Default = 1.0

    Output temperature: Reciprocal of the multiplier applied to the input to softmax that
    produces the distribution over output tokens.



- **mup_embedding_mult**: float

    Default = 1.0

    Scalar by which we multiply the output of the embedding layer



- **mup_rp_embedding_mult**: float

    Default = 1.0

    Scalar by which we multiply vectors representing relative position



- **mup_width_scale**: int

    Default = 2

    What to scale width by when creating the delta model for mup



## NeoXArgsDeepspeedConfig

Args for deepspeed config
    Every argument included here will be included in deepspeed config json
    As of Mar 8 2023, up to date compared to https://www.deepspeed.ai/docs/config-json/



- **deepspeed**: bool

    Default = True

    boolean flag to enable DeepSpeed (Always True)



- **train_batch_size**: int

    Default = None

    The effective training batch size. This is the amount of data samples that leads to one step of model update. train_batch_size is aggregated by the batch size that a single GPU processes in one forward/backward pass (a.k.a., train_step_batch_size), the gradient accumulation steps (a.k.a., gradient_accumulation_steps), and the number of GPUs.



- **train_micro_batch_size_per_gpu**: int

    Default = None

    Batch size to be processed by one GPU in one step (without gradient accumulation). When specified, gradient_accumulation_steps is automatically calculated using train_batch_size and number of GPUs. Should not be concurrently specified with gradient_accumulation_steps in the configuration JSON.



- **gradient_accumulation_steps**: int

    Default = 1

    Number of training steps to accumulate gradients before averaging and applying them. This feature is sometimes useful to improve scalability since it results in less frequent communication of gradients between steps. Another impact of this feature is the ability to train with larger batch sizes per GPU. When specified, train_step_batch_size is automatically calculated using train_batch_size and number of GPUs. Should not be concurrently specified with train_step_batch_size in the configuration JSON.



- **optimizer**: dict

    Default = None

    dict containing the keys type and params

    type: The optimizer name. DeepSpeed natively supports Adam, AdamW, OneBitAdam, Lamb, and OneBitLamb optimizers (See here for details) and will import other optimizers from torch.

    params: Dictionary of parameters to instantiate optimizer. The parameter names must match the optimizer constructor signature (e.g., for Adam).



- **scheduler**: dict

    Default = None

    dict containing the keys type and params

    type: The scheduler name. See here (https://deepspeed.readthedocs.io/en/latest/schedulers.html) for list of support schedulers.

    params: Dictionary of parameters to instantiate scheduler. The parameter names should match scheduler constructor signature.



- **fp32_allreduce**: bool

    Default = False

    During gradient averaging perform allreduce with 32 bit values



- **prescale_gradients**: bool

    Default = False

    Scale gradients before doing allreduce



- **gradient_predivide_factor**: float

    Default = 1.0

    Before gradient averaging predivide gradients by a specified factor, can sometimes help with fp16 stability when scaling to large numbers of GPUs



- **sparse_gradients**: bool

    Default = False

    Enable sparse compression of torch.nn.Embedding gradients.



- **fp16**: dict

    Default = None

    Configuration for using mixed precision/FP16 training that leverages NVIDIA’s Apex package.

    Dictionary options as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#fp16-training-options



- **bf16**: dict

    Default = None

    Configuration for using bfloat16 floating-point format as an alternative to FP16. BFLOAT16 requires hardware support (e.g., NVIDIA A100).

    Dictionary options as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#bfloat16-training-options



- **amp**: dict

    Default = None

    Configuration for using automatic mixed precision (AMP) training that leverages NVIDIA’s Apex AMP package.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#automatic-mixed-precision-amp-training-options



- **gradient_clipping**: float

    Default = 1.0

    Enable gradient clipping with provided value



- **zero_optimization**: dict

    Default = None

    Configuration for using ZeRO optimization.

    Multi-level dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#zero-optimization-options



- **curriculum_learning**: dict

    Default = None

    



- **curriculum_seqlen**: int

    Default = 0

    Internal var for tracking the current seqlen



- **steps_per_print**: int

    Default = 10

    Print train loss every N steps.



- **wall_clock_breakdown**: bool

    Default = False

    Enable timing of the latency of forward/backward/update training phases.



- **dump_state**: bool

    Default = False

    Print out state information of DeepSpeed object after initialization.



- **flops_profiler**: dict

    Default = None

    Configuration for using FLOPS profiler.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#flops-profiler



- **communication_data_type**: bool

    Default = None

    During gradient averaging, perform communication with selected data type. By default it will be determined by selected regime



- **autotuning**: dict

    Default = None

    Configuration for using autotuning.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#autotuning



- **activation_checkpointing**: dict

    Default = None

    Configuration for using activation checkpointing.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#activation-checkpointing



- **sparse_attention**: dict

    Default = None

    Configuration for using sparse attention.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#sparse-attention



- **data_efficiency**: dict

    Default = None

    Configuration for using data efficiency.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#data-efficiency



- **tensorboard**: dict

    Default = None

    Configuration for using tensorboard.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#monitoring-module-tensorboard-wandb-csv



- **wandb**: dict

    Default = None

    Configuration for using wandb.



- **csv_monitor**: dict

    Default = None

    Configuration for using csv_monitor.



- **elasticity**: dict

    Default = None

    Configuration for using elastic training.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#elastic-training-config-v01-and-v02



- **comms_logger**: dict

    Default = None

    Configuration for using communication logger.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#communication-logging



- **compression_training**: dict

    Default = None

    Configuration for using compression training.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#compression



- **checkpoint**: dict

    Default = None

    Configuration for using checkpointing.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#checkpoint-options



- **data_types**: dict

    Default = None

    Configuration for using data types.

    Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#data-type-options



- **deepspeed_extra_args**: dict

    Default = None

    Dictionary of extra arguments to be included in the yaml config file. This can be used for any argument not included in the above list.



## NeoXArgsDeepspeedRunner

Args for deepspeed runner (deepspeed.launcher.runner).
    Every argument included here will be passed as command line argument to deepspeed.launcher.runner



- **hostfile**: str

    Default = None

    list of hostnames / ssh aliases and the number of GPUs per host

    example file contents:
    worker-1 slots=4
    worker-2 slots=4
    127.0.0 slots=4
    127.0.1 slots=4



- **include**: str

    Default = None

    Specify hardware resources to use during execution. String format is `NODE_SPEC[@NODE_SPEC ...]` where `NODE_SPEC=NAME[:SLOT[,SLOT ...]]`. If `:SLOT` is omitted, include all slots on that host. Example: `"worker-0@worker-1:0,2"` will use all slots. on `worker-0` and slots `[0, 2]` on `worker-1`.



- **exclude**: str

    Default = None

    Specify hardware resources to NOT use during execution. Same format as include



- **num_nodes**: int

    Default = -1

    Total number of worker nodes to run on, this will use the top N hosts from the given hostfile. -1 will use all.



- **num_gpus**: int

    Default = None

    Max number of GPUs to use on each node, will use [0:N) GPU ids on each node. None / not specifying a value will use all.



- **master_port**: int

    Default = 29500

    Port used by PyTorch distributed for communication during training.



- **master_addr**: str

    Default = None

    IP address of node 0, will be inferred via 'hostname -I' if not specified.



- **launcher**: typing.Literal['pdsh', 'openmpi', 'mvapich', 'slurm']

    Default = pdsh

    Launcher backend for multi-node training. Options currently include PDSH, OpenMPI, MVAPICH.



- **force_multi**: bool

    Default = False

    Force multi-node training even if only one node is specified.



- **detect_nvlink_pairs**: bool

    Default = False

    If true, autodetects nvlink pairs and remaps cuda visible devices to place them next to each other. This is an Eleuther addition to deepspeed, and should speed up model parallel training on setups with nvlink pairs when mp=2.



- **autotuning_run**: str

    Default = None

    Either "tune", "run", or `None`.



- **no_ssh_check**: bool

    Default = False

    If true, overrides the default check where DeepSpeed confirms that the headnode is accessible via ssh.



- **comment**: str

    Default = None

    Adds a `--comment` to the DeepSpeed launch command. In DeeperSpeed this is passed on to the SlurmLauncher as well. Sometimes necessary for cluster rules, or so I've heard.



- **account**: str

    Default = None

    Adds a `--account` to the DeepSpeed launch command. In DeeperSpeed this is passed on to the SlurmLauncher as well. Sometimes necessary for cluster rules, or so I've heard.