File size: 50,344 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 |
Arguments for gpt-neox. All of the following can be specified in your .yml config file(s):
## NeoXArgsLRScheduler
LR Scheduler Arguments
- **lr_decay_style**: typing.Literal['constant', 'linear', 'cosine', 'exponential']
Default = linear
Learning rate decay function. Choose from 'constant', 'linear', 'cosine', 'exponential'.
- **lr_decay_iters**: int
Default = None
Number of iterations to decay learning rate over. If None, defaults to
--train-iters or the equivalent inferred value from train_epochs.
- **lr_decay_fraction**: float
Default = None
Effective fraction of training over which to decay lr. Overrides lr_decay_iters.
Useful when specifying train_epochs.
- **min_lr**: float
Default = 0.0
Minimum value for learning rate. The scheduler clips values below this threshold.
- **warmup**: float
Default = 0.01
Percentage of total iterations to warmup on (.01 = 1 percent of all training iters).
- **override_lr_scheduler**: bool
Default = False
Reset the values of the scheduler (learning rate,warmup iterations, minimum learning rate, maximum number of iterations, and decay style from input arguments and ignore values from checkpoints. Note that all the above values will be reset.
- **use_checkpoint_lr_scheduler**: bool
Default = False
Use checkpoint to set the values of the scheduler (learning rate, warmup iterations, minimum learning rate, maximum number of iterations, and decay style from checkpoint and ignore input arguments.
## NeoXArgsLogging
Logging Arguments
- **use_wandb**: bool
Default = None
Flag indicating if wandb is to be used.
- **wandb_group**: str
Default = None
Weights and Biases group name - used to group together "runs".
- **wandb_team**: str
Default = None
Team name for Weights and Biases.
- **wandb_project**: str
Default = neox
wandb project name
- **wandb_host**: str
Default = https://api.wandb.ai
url of the wandb host
- **wandb_init_all_ranks**: bool
Default = False
Initialize wandb on all ranks.
- **git_hash**: str
Default = 62c9738a
current git hash of repository
- **log_dir**: str
Default = None
Directory to save logs to.
- **tensorboard_dir**: str
Default = None
Write TensorBoard logs to this directory.
- **use_comet**: bool
Default = None
Flag indicating if comet is to be used.
- **comet_workspace**: Optional
Default = None
Comet workspace name, if not configured Comet Experiments will be created in the user configured default workspace.
- **comet_project**: Optional
Default = None
Comet project name, if not configured Comet Experiments will be created in the Uncategorized Experiments project.
- **comet_experiment_name**: Optional
Default = None
Custom name for the Comet experiment. If not provided, a random name is used.
- **comet_tags**: Optional
Default = None
List of tags to attach to the created Comet Experiment.
- **comet_others**: Optional
Default = None
Custom metadata to attach to the created Comet Experiment.
- **log_interval**: int
Default = 100
Interval between logging.
- **log_grad_pct_zeros**: bool
Default = False
Log the percentage of zeros for the gradient of each parameter to wandb / tensorboard (useful for debugging). Needs wandb_init_all_ranks set to True if using pipeline parallelism to log all ranks.
- **log_param_norm**: bool
Default = False
Log the frob norm of the parameters to wandb / tensorboard (useful for debugging). Needs wandb_init_all_ranks set to True if using pipeline parallelism to log all ranks.
- **log_grad_norm**: bool
Default = False
Log the frob norm of the gradients to wandb / tensorboard (useful for debugging).
(N.B - this will only work with pp = 0 for now, as we don't have access to the gradients of the model because
deepspeed.)
- **log_optimizer_states**: bool
Default = False
Log the frob norm of the optimizer states to wandb / tensorboard (useful for debugging).
- **log_gradient_noise_scale**: bool
Default = False
Whether to log the gradient noise scale when training (cf. https://arxiv.org/abs/1812.06162 for explanation)
- **gradient_noise_scale_n_batches**: int
Default = 5
Number of batches to accumulate gradients for in the gradient noise scale logger.
- **gradient_noise_scale_cpu_offload**: bool
Default = False
Whether to offload the buffered gradients to cpu when measuring gradient noise scale.
- **memory_profiling**: bool
Default = False
Whether to take a memory snapshot of the model. Useful for debugging memory issues.
- **memory_profiling_path**: str
Default = None
Path to save memory snapshot to.
- **profile**: bool
Default = False
Enable nsys profiling. When using this option,
nsys options should be specified in commandline.
An example nsys commandline is
```
nsys profile -s none -t nvtx,cuda -o <path/to/output_file>
--force-overwrite true
--capture-range=cudaProfilerApi
--capture-range-end=stop
```
- **profile_step_start**: int
Default = 10
Step to start profiling at.
- **profile_step_stop**: int
Default = 12
Step to stop profiling at.
## NeoXArgsModel
Model Arguments
- **precision**: typing.Literal['fp16', 'fp32', 'bfloat16']
Default = None
description of the used precision, either one of fp16 or fp32 (and in the future bf16).
- **num_layers**: int
Default = None
Number of transformer layers.
- **hidden_size**: int
Default = None
Transformer hidden size.
- **intermediate_size**: int
Default = None
Transformer intermediate size. Default = 4h
- **mlp_multiple_of**: int
Default = 1
force mlp size to be a multiple of this value
- **expansion_factor**: float
Default = None
Transformer intermediate size. Default = 4
- **num_attention_heads**: int
Default = None
Number of transformer attention heads.
If num_kv_heads is set, will control only number of query heads.
- **num_kv_heads**: int
Default = None
Number of transformer key/value attention heads.
If set to None or the same value as num_attention_heads, will perform multi-head attention (MHA).
If set to < num_attention_heads but > 1, will perform grouped-query attention (GQA) (https://arxiv.org/pdf/2305.13245.pdf)
If set to 1, will perform multi-query attention.
Must be < num_attention_heads and divide num_attention_heads evenly.
- **seq_length**: int
Default = None
Maximum sequence length to process.
- **sliding_window_width**: int
Default = None
Width of the attention sliding window. Only supported with Flash Attention 2.
- **max_position_embeddings**: int
Default = None
Maximum number of position embeddings to use. This is the size of position embedding.
- **norm**: typing.Literal['layernorm', 'rmsnorm', 'scalenorm', 'te_rmsnorm', 'te_layernorm']
Default = layernorm
Normalization layer to use. Choose from "layernorm", "rmsnorm", "scalenorm", "te_rmsnorm", "te_layernorm".
- **layernorm_fusion**: bool
Default = False
Use fused layer norm kernel (if `norm` is `layernorm`).
- **rmsnorm_fusion**: bool
Default = False
Use fused RMS norm kernel (if `norm` is `rmsnorm`).
- **use_qk_layernorm**: bool
Default = False
Use QK Normalization
- **layernorm_epsilon**: float
Default = 1e-05
Layer norm epsilon.
- **rms_norm_epsilon**: float
Default = 1e-08
Root mean squared norm epsilon
- **scalenorm_epsilon**: float
Default = 1e-08
Scalenorm epsilon
- **pos_emb**: typing.Literal['learned', 'rotary', 'sinusoidal', 'rpe', 'alibi', 'none']
Default = learned
Type of positional embedding to use - choose from 'learned', 'rotary', 'sinusoidal', 'rpe', 'none'
- **rpe_num_buckets**: int
Default = 32
T5 relative positional encoding number of buckets, default 32.
- **rpe_max_distance**: int
Default = 128
T5 relative positional encoding max distance, default 128.
- **opt_pos_emb_offset**: int
Default = 0
Learned position embedding offset (only used by OPT, where it should be set to 2).
- **no_weight_tying**: bool
Default = False
Disables weight tying between embedding weights and final Linear layer
- **attention_config**: list
Default = None
Attention configuration for gpt-neox
The first item in the list specifies the attention type(s), and should be a list of strings. The second item
specifies the number of times to repeat those attention types in the full list.
attention type choices: [global, local, sparse_fixed, sparse_variable, bslongformer, bigbird, "gmlp", "amlp", "flash", "mamba", "rwkv"]
So a 12 layer network with only global attention could be specified like:
[[[`global`], 12]]
or a 12 layer network with alternating global / local like:
[[[`global`, `local`], 6]]
If none is specified, this defaults to
[[[`global`], n_layers]]
- **sparsity_config**: dict
Default = None
Sparsity configuration dict as defined in https://www.deepspeed.ai/docs/config-json/#sparse-attention
Note that since neox is autoregressive, attention is always "unidirectional" and `horizontal_global_attention` is
always false.
The main difference between our sparsity config and deepspeed's is that `mode` is ignored - since it is instead
specified in attention_config defining each layer.
An example config is given below:
"sparse_attention": {
"block": 16,
"different_layout_per_head": true,
"num_local_blocks": 4,
"num_global_blocks": 1,
"num_different_global_patterns": 4,
"num_random_blocks": 0,
"local_window_blocks": [4],
"global_block_indices": [0],
"global_block_end_indices": None,
"num_sliding_window_blocks": 3
}
- **num_unique_layers**: int
Default = None
Number of unique transformer layers. num-layers should be divisible by this value. Currently only has an effect when pipe_parallel_size=0.
- **param_sharing_style**: str
Default = grouped
Ordering of the shared parameters. For example, for a num-layers=4 and --num-unique-layers=2, we will have the following ordering for two unique layers 1 and 2-: grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].
- **make_vocab_size_divisible_by**: int
Default = 128
Pad the vocab size to be divisible by this value. This is added for computational efficiency reasons.
- **activation**: typing.Literal['gelu', 'geglu', 'relu', 'softsign', 'swish', 'mish', 'silu', 'reglu', 'swiglu', 'bilinear', 'glu']
Default = gelu
Activation function to use - choose from ["gelu", "geglu", "relu", "softsign", "swish", "mish", "silu", "reglu", "swiglu", "bilinear", "glu"]
- **use_flashattn_swiglu**: bool
Default = False
Use flash attention's version of swiglu
- **scaled_upper_triang_masked_softmax_fusion**: bool
Default = False
Enable fusion of query_key_value_scaling time (upper diagonal) masking and softmax.
- **scaled_masked_softmax_fusion**: bool
Default = False
Enable fusion of query_key_value_scaling general masking and softmax.
- **bias_gelu_fusion**: bool
Default = False
Enable bias and gelu fusion.
- **bias_dropout_fusion**: bool
Default = False
Enable bias and dropout fusion.
- **rope_fusion**: bool
Default = False
Enable rotary embedding fusion.
- **fp16_lm_cross_entropy**: bool
Default = False
Move the cross entropy unreduced loss calculation for lm head to fp16.
- **init_method_std**: float
Default = 0.02
Standard deviation of the zero mean normal distribution used for weight initialization.
- **apply_query_key_layer_scaling**: bool
Default = False
Scale Q * K^T by 1 / layer-number. If this flag is set, then it will automatically set attention-softmax-in-fp32 to true
- **use_cpu_initialization**: bool
Default = False
If set, affine parallel weights initialization uses CPU
- **attention_softmax_in_fp32**: bool
Default = False
Run attention masking and softmax in fp32.
- **rotary_pct**: float
Default = 1.0
pct of hidden dims to apply rotary positional embedding to
- **rotary_emb_base**: int
Default = 10000
Base for rotary positional embedding
- **rotary_save_freqs_buffer**: bool
Default = False
Used to control whether the `inv_freqs` buffer in rotary embeddings
will be stored in checkpoints (persistent=True) or not.
Defaults to false, but is left configurable to maintain backward-compatibility
with GPT-NeoX checkpoints that were trained with this flag.
- **init_method**: typing.Literal['normal', 'scaled_normal', 'orthogonal', 'scaled_orthogonal', 'xavier_uniform', 'xavier_normal', 'wang_init', 'small_init', 'single_residual_scaled_normal']
Default = normal
Init function used on all layers except ff residual outputs - choose from
["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]
- **output_layer_init_method**: typing.Literal['normal', 'scaled_normal', 'orthogonal', 'scaled_orthogonal', 'xavier_uniform', 'xavier_normal', 'wang_init', 'small_init', 'single_residual_scaled_normal']
Default = scaled_normal
Init function used for ff residual outputs - choose from
["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]
- **gmlp_attn_dim**: int
Default = 64
the dimension of the single head self attention in gmlp model (not used in gpt models).
If None - gmlp model doesn't use attention.
- **gpt_j_residual**: bool
Default = False
If false, we use the conventional residual path:
x = x + attn(ln1(x))
x = x + mlp(ln2(x))
Otherwise, we use the residual path from GPT-J, which offers a slight speedup:
x = ln(x)
x = x + attn(x) + mlp(x)
- **gpt_j_tied**: bool
Default = False
If false, we use
x = x + attn(ln1(x)) + mlp(ln2(x))
Otherwise, we tie the layer norms
y = ln(x)
x = x + attn(y) + mlp(y)
- **use_bias_in_norms**: bool
Default = True
If false, norms (e.g. LayerNorm) will not have bias terms
- **use_bias_in_attn_linear**: bool
Default = True
If false, attn_linear (e.g. QKVO) will not have bias terms
- **use_bias_in_mlp**: bool
Default = True
If false, mlps will not have bias terms
- **soft_prompt_tuning**: dict
Default = None
Dictionary configuring the soft prompt tuning parameters.
If enabled, will train *only* the soft prompt, and freezes the rest of the model.
parameters in the dict are:
'enabled': bool = True # enables soft prompting
'num_tokens': int = 10 # length of the soft prompt in tokens
'init_string': str = '' # if provided, initialize the soft prompt with the word embeddings of this string
'init_range': float = 0.5 # if no init string is provided, initialize the soft prompt with a uniform distribution between -init_range and init_rang
- **mamba_selective_scan_fusion**: bool
Default = False
Enable fused kernels for Mamba selective scan.
- **mamba_causal_conv_fusion**: bool
Default = False
Enable fused kernels for Mamba causal Conv1d.
- **mamba_inner_func_fusion**: bool
Default = False
Enable fused inner operator for Mamba. (Supersedes conv. and selective scan fusion flags, requires each of those kernels to be installed.)
- **mamba_selective_fp32_params**: bool
Default = True
Keep selected parameters in fp32 for Mamba (A and D).
Requires https://github.com/EleutherAI/DeeperSpeed/pull/61 .
- **mamba_use_bias_in_conv**: bool
Default = True
If false, conv1d in mamba block will not have bias term
- **mamba_use_bias_in_linears**: bool
Default = False
Enable bias terms in mamba block up- and down- projections (in_proj and out_proj).
- **output_layer_parallelism**: typing.Literal['column']
Default = column
Parameter controlling whether the output layer is parallelized over the hidden dim (row) or the vocab dim (column)
- **dim_att**: int
Default = None
Total dimension of the attention mechanism for RWKV. If not set, defaults to hidden_size.
- **head_size**: int
Default = None
Size of each attention head for RWKV. Calculated as dim_att // num_attention_heads.
- **ffn_dim**: int
Default = None
Dimension of the feed-forward network for RWKV. If not set, calculated based on hidden_size and expansion_factor.
## NeoXArgsOptimizer
Optimizer Arguments
- **optimizer_type**: typing.Literal['adam', 'onebitadam', 'cpu_adam', 'cpu_torch_adam', 'sm3', 'madgrad_wd', 'sgd', 'lion']
Default = adam
Type of optimizer to use. Choose from ['adam', 'onebitadam', 'cpu_adam', 'cpu_torch_adam', 'sm3', 'madgrad_wd', 'sgd', 'lion']
NOTE: sgd will use MuSGD from Mup. Mup must be enabled for this optimizer.
- **use_bnb_optimizer**: bool
Default = False
Whether to enable the bitsandbytes optimizers
- **zero_stage**: typing.Union[int, typing.List[int], typing.Literal['all']]
Default = None
Zero Optimizer stage
- **zero_reduce_scatter**: bool
Default = None
Zero: Uses reduce or reduce scatter instead of allreduce to average gradients
- **zero_contiguous_gradients**: bool
Default = None
Zero: Copies the gradients to a contiguous buffer as they are produced. Avoids memory fragmentation during backward pass. Only useful when running very large models.
- **zero_reduce_bucket_size**: int
Default = None
Zero: Number of elements reduced/allreduced at a time. Limits the memory required for the allgather for large model sizes
- **zero_allgather_bucket_size**: int
Default = None
Zero: Number of elements allgathered at a time. Limits the memory required for the allgather for large model sizes
- **lr**: float
Default = None
Max Learning rate during training
## NeoXArgsOther
Misc. Arguments
- **distributed_backend**: str
Default = nccl
Which backend to use for distributed training.
- **local_rank**: int
Default = None
local rank passed from distributed launcher.
- **rank**: int
Default = None
global rank of process being run (passed in via distributed launcher)
- **lazy_mpu_init**: bool
Default = False
If set to True, initialize_megatron() skips DDP initialization and returns function to complete it instead. Also turns on use-cpu-initialization flag. This is for external DDP manager.
- **short_seq_prob**: float
Default = 0.1
Probability of producing a short sequence.
- **eod_mask_loss**: bool
Default = False
Mask loss for the end of document tokens.
- **adlr_autoresume**: bool
Default = False
Enable auto-resume on adlr cluster.
- **adlr_autoresume_interval**: int
Default = 1000
Intervals over which check for auto-resume termination signal
- **seed**: int
Default = 1234
Random seed used for python, numpy, pytorch, and cuda.
- **onnx_safe**: bool
Default = False
Use workarounds for known problems with Torch ONNX exporter
- **deepscale**: bool
Default = False
(Deprecated) enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)'
- **deepscale_config**: str
Default = None
(Deprecated) deepscale json configuration file.
- **deepspeed_mpi**: bool
Default = False
Run via MPI, this will attempt to discover the necessary variables to initialize torch distributed from the MPI environment
- **deepspeed_slurm**: bool
Default = False
Run via SLURM, this will attempt to discover the necessary variables to initialize torch distributed from the SLURM environment
- **user_script**: str
Default = None
user script to be run
- **iteration**: int
Default = None
Set during training
- **do_train**: bool
Default = None
Set during training
- **do_valid**: bool
Default = None
Set during training
- **do_test**: bool
Default = None
Set during training
- **save_iters**: list
Default = None
Set during training
- **global_num_gpus**: int
Default = None
Set during launching
## NeoXArgsParallelism
Parallelism Arguments
- **pipe_parallel_size**: int
Default = 0
Number of pipeline parallel stages. Disable with 0.
- **model_parallel_size**: int
Default = 1
Size of the model parallelism.
- **pipe_partition_method**: str
Default = type:transformer|mlp
method used to distribute model layers across pipeline stages. Choose from "parameters", which balances the number
of parameters on each pipeline stage, "uniform", which naively balances the number of layers per stage, or
"type:[regex]", which balances layers whose class names match [regex]
- **world_size**: int
Default = None
Total world size (i.e number of gpus in cluster). Configured post-launch using distributed launcher
- **is_pipe_parallel**: bool
Default = False
flag to determine whether pipeline parallelism is on - shouldn't be set by user, is automatically determined
according to pipeline parallel size.
- **sequence_parallel**: bool
Default = False
flag to determine whether Megatron-style Sequence Parallelism (https://arxiv.org/abs/2205.05198)
(Layernorm inputs and activations are sharded across model parallel group) will be used. Has no effect when model_parallel_size is 1.
**Set by user, in contrast to neox_args.is_pipe_parallel.**
- **expert_interval**: int
Default = 2
Have one MoE layer every expert_interval layers
## NeoXArgsTemplate
NeoXArgsTemplate()
## NeoXArgsTextgen
Text Generation arguments
- **text_gen_type**: str
Default = None
How to generate text/sample the model.
Options: `unconditional`, `input-file`, `interactive`, `precompute`
- **precompute_model_name**: str
Default = None
Model name to use for saving precomputed logprobs
- **temperature**: float
Default = 0.0
exponential scaling output distribution ("higher == more risk")
- **top_p**: float
Default = 0.0
Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p.
- **top_k**: int
Default = 0
integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token.
- **return_logits**: bool
Default = False
Boolean for whether to return the logits for generated tokens
- **maximum_tokens**: int
Default = 64
maximum number of tokens to be generated
- **prompt_end**: str
Default =
a single prompt's end. Defaults to newline
- **sample_input_file**: str
Default = None
Get input from file instead of interactive mode, each line is an input.
- **sample_output_file**: str
Default = samples.txt
Output file
- **num_samples**: int
Default = 1
Number of samples to generate unconditionally, defaults to 1 and interactive conditional sampling
- **recompute**: bool
Default = False
During generation recompute all attention instead of using previously computed keys/values.
Should be set to true for sparse attention models
- **eval_results_prefix**: str
Default =
prefix to which to save evaluation results - final fp will be {eval_results_prefix}_eval_results_yy-mm-dd-HH-MM.json
- **eval_tasks**: list
Default = None
Tasks to evaluate on using lm_eval_harness
NOTE: Requires internet connection
- **moe_top_k**: int
Default = 1
Activate top K experts in MoE
- **use_tutel**: bool
Default = False
Use Tutel optimizations in MoE
- **moe_num_experts**: int
Default = 1
Number of MoE experts
- **moe_loss_coeff**: float
Default = 0.1
Coefficient for MoE loss
- **moe_train_capacity_factor**: float
Default = 1.0
The capacity of the expert at train time
- **moe_eval_capacity_factor**: float
Default = 1.0
The capacity of the expert at eval time
- **moe_min_capacity**: int
Default = 4
The minimum capacity per expert regardless of the capacity_factor
- **moe_token_dropping**: bool
Default = False
Whether to drop tokens when exceeding capacity
- **create_moe_param_group**: bool
Default = True
Whether to create a separate parameter group for MoE parameters
- **moe_use_residual**: bool
Default = True
Whether to use residual in MoE
- **moe_expert_parallel_size**: int
Default = 1
Number of parallel experts in MoE
- **moe_type**: str
Default = megablocks
Either `deepspeed` or `megablocks`
- **moe_glu**: bool
Default = False
Use gated linear units in MoE
- **moe_lbl_in_fp32**: bool
Default = False
Whether to compute the load balancing loss in fp32.
- **moe_jitter_eps**: float
Default = None
Coefficient for MoE routing jitter. Jitter is
not used if set to None
- **enable_expert_tensor_parallelism**: bool
Default = False
Enable expert tensor parallelism
## NeoXArgsTokenizer
Tokenizer Arguments
- **tokenizer_type**: typing.Literal['GPT2BPETokenizer', 'HFTokenizer', 'HFGPT2Tokenizer', 'SPMTokenizer', 'CharLevelTokenizer', 'TiktokenTokenizer']
Default = GPT2BPETokenizer
Type of tokenizer to use - should be one of ["GPT2BPETokenizer", "HFTokenizer", "HFGPT2Tokenizer", "SPMTokenizer", "CharLevelTokenizer", "TiktokenTokenizer"]
- **padded_vocab_size**: int
Default = None
Total (padded) vocabulary size of tokenizer. Configured after launching of training,
as it's dependent on the parallelism size.
## NeoXArgsTraining
Training Arguments
- **data_path**: str
Default = None
Path to combined dataset to split.
- **use_shared_fs**: bool
Default = True
Whether to use a shared filesystem for data loading. If False, local rank 0 on all nodes will preprocess the data,
otherwise only global rank 0 will preprocess the data. This is implemented in megatron/data/gpt2_dataset.py::_build_index_mappings.
- **train_data_paths**: list
Default = None
List of paths to train datasets.
- **train_label_data_paths**: list
Default = None
List of paths to train label datasets (not shifted by 1 yet!).
- **train_reward_data_paths**: list
Default = None
List of paths to train reward datasets
- **test_data_paths**: list
Default = None
List of paths to test datasets.
- **test_label_data_paths**: list
Default = None
List of paths to test label datasets (not shifted by 1 yet!).
- **test_reward_data_paths**: list
Default = None
List of paths to test reward datasets
- **valid_data_paths**: list
Default = None
List of paths to validation datasets.
- **valid_label_data_paths**: list
Default = None
List of paths to validation label datasets (not shifted by 1 yet!).
- **valid_reward_data_paths**: list
Default = None
List of paths to validation reward datasets
- **pos_train_data_paths**: list
Default = None
- **neg_train_data_paths**: list
Default = None
List of paths to positive and negative training datasets.
- **pos_train_label_data_paths**: list
Default = None
- **neg_train_label_data_paths**: list
Default = None
List of paths to positive and negative training label datasets (not shifted by 1 yet!).
- **pos_valid_data_paths**: list
Default = None
- **neg_valid_data_paths**: list
Default = None
List of paths to positive and negative validation datasets.
- **pos_valid_label_data_paths**: list
Default = None
- **neg_valid_label_data_paths**: list
Default = None
List of paths to positive and negative validation label datasets (not shifted by 1 yet!).
- **pos_test_data_paths**: list
Default = None
- **neg_test_data_paths**: list
Default = None
List of paths to positive and negative test datasets.
- **pos_test_label_data_paths**: list
Default = None
- **neg_test_label_data_paths**: list
Default = None
List of paths to positive and negative test label datasets (not shifted by 1 yet!).
- **train_data_weights**: list
Default = None
List of 'weights' that decide how often to sample from each training dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `train_data_paths`
- **valid_data_weights**: list
Default = None
List of 'weights' that decide how often to sample from each validation dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `valid_data_paths`
- **test_data_weights**: list
Default = None
List of 'weights' that decide how often to sample from each test dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `test_data_paths`
- **weight_by_num_documents**: bool
Default = False
If True, Builds dataset weights from a multinomial distribution over groups of data according to the number of
documents in each group.
WARNING: setting this to True will override any user provided weights
We sample from a group according to the probability p(L) ∝ |L| ** α,
where p(L) is the probability of sampling from a given group,
|L| is the number of examples in that datapoint,
and α is a coefficient that acts to upsample data from underrepresented groups
Hence α (`alpha`) allows us to control how much to 'boost' the probability of training on low-resource groups.
See https://arxiv.org/abs/1911.02116 for more details
- **weighted_sampler_alpha**: float
Default = 1.0
Alpha value for `weight_by_num_documents`. Only has an effect if `weight_by_num_documents` = True.
when alpha = 1, the probability of sampling from a given group = n_samples / total_samples
as alpha -> 0, the probability of sampling from all groups becomes equal, and number of documents has no effect
as alpha -> inf, the probability of sampling from the groups with *the most samples* -> 1
- **data_impl**: typing.Literal['infer', 'mmap', 'cached']
Default = infer
Implementation of indexed datasets, can be one of "infer", "cached", or "mmap"
- **pack_impl**: typing.Literal['packed', 'pack_until_overflow', 'unpacked']
Default = packed
Packing implementation, can be one of "packed", "pack_until_overflow", or "unpacked".
warning: pack_until_overflow is very naive and will likely have issues with pretraining scale datasets
- **dataset_impl**: typing.Literal['gpt2', 'pairwise']
Default = gpt2
Dataset implementation, can be one of "gpt2" or "pairwise"
- **train_impl**: typing.Literal['normal', 'dpo', 'rm', 'kto']
Default = normal
Training implementation, can be one of "normal", "dpo", "kto", or "rm"
- **dpo_fp32**: bool
Default = True
Whether to cast logits to fp32 for DPO loss calculation.
- **dpo_reference_free**: bool
Default = False
Whether to use reference-free DPO.
- **dpo_beta**: float
Default = 0.1
Beta value for DPO
- **kto_fp32**: bool
Default = True
Whether to cast logits to fp32 for KTO loss calculation.
- **kto_desirable_weight**: float
Default = 1.0
Weight for desirable loss in KTO. Might help if you have unbalanced desirable and undesirable classes.
- **kto_undesirable_weight**: float
Default = 1.0
Weight for undesirable loss in KTO. Might help if you have unbalanced desirable and undesirable classes.
- **kto_beta**: float
Default = 0.1
Beta value for KTO
- **allow_chopped**: bool
Default = True
WARNING: if your packing impl is packed, this is ignored.
Allow chopped samples in the dataset.
(e.g if your sequence length is 1024 and you have a sample of length 1026, it will be chopped to 1024)
- **mmap_warmup**: bool
Default = False
Warm up mmap files.
- **save**: str
Default = None
Output directory to save checkpoints to.
- **s3_path**: str
Default = None
Path to s3 bucket for saving checkpoints.
- **s3_chunk_size**: int
Default = 104857600
The number of bytes in each file chunk when uploading to s3. Defaults to 100MiB.
- **config_files**: dict
Default = None
Store of original config files mapping config filename to file contents
- **load**: str
Default = None
Directory containing a model checkpoint.
- **checkpoint_validation_with_forward_pass**: bool
Default = False
save input and output of a forward pass with the checkpoint and validate after load
- **checkpoint_scale**: typing.Literal['linear', 'log']
Default = linear
How step at which checkpoints are saved should scale. "linear" implies 1 checkpoint will be saved at every multiple of `checkpoint-factor`,
while "log" implies that the number of steps between each checkpoint will be multiplied by `checkpoint-factor` at each step, starting from step 1.
- **checkpoint_factor**: int
Default = None
Acts as a multiplier on either the "log" or "linear" checkpoint spacing.
With `checkpoint-scale="linear"`, `checkpoint-factor=20`, and `train-iters=100`, checkpoints will be saved at
steps [20, 40, 60, 80, 100].
With `checkpoint-scale="log"`, `checkpoint-factor=2`, and `train-iters=100`, checkpoints will be saved at
steps [1, 2, 4, 8, 16, 32, 64, 100].
Note that the last checkpoint step is always saved.
- **extra_save_iters**: list
Default = None
Additional iterations when a checkpoint should be saved.
Must be a list of ints or `None`.
- **no_save_optim**: bool
Default = False
Do not save current optimizer.
- **no_save_rng**: bool
Default = False
Do not save current rng state.
- **no_load_optim**: bool
Default = False
Do not load optimizer when loading checkpoint.
- **no_load_rng**: bool
Default = False
Do not load rng state when loading checkpoint.
- **finetune**: bool
Default = False
Load model for finetuning. Do not load optimizer or rng state from checkpoint and set iteration to 0. Assumed when loading a release checkpoint.
- **batch_size**: int
Default = None
training microbatch size per gpu
- **train_iters**: int
Default = None
Number of iterations to run for training.
- **train_epochs**: int
Default = None
Number of epochs to run for training. Do not specify both train_epochs and train_iters.
Not currently compatible with data reweighing, pairwise datasets, and packing other than 'packed'
- **eval_iters**: int
Default = 100
Number of iterations to run for evaluation validation/test for.
- **keep_last_n_checkpoints**: int
Default = None
Number of last checkpoints to keep
- **eval_interval**: int
Default = 1000
Interval between running evaluation on validation set.
- **split**: str
Default = 969, 30, 1
Comma_separated list of proportions for training, validation, and test split. For example the split 90,5,5 will use 90% of data for training, 5% for validation and 5% for test.
- **vocab_file**: str
Default = None
Path to the vocab file.
- **merge_file**: str
Default = None
Path to the BPE merge file.
- **num_workers**: int
Default = 2
Dataloader number of workers.
- **exit_interval**: int
Default = None
Exit the program after the iteration is divisible by this value.
- **attention_dropout**: float
Default = 0.0
Post attention dropout probability.
- **hidden_dropout**: float
Default = 0.0
Dropout probability for hidden state transformer.
- **weight_decay**: float
Default = 0.1
Weight decay coefficient for L2 regularization.
- **checkpoint_activations**: bool
Default = False
Checkpoint activation to allow for training with larger models, sequences, and batch sizes.
- **checkpoint_num_layers**: int
Default = 1
Chunk size (number of layers) for checkpointing.
- **deepspeed_activation_checkpointing**: bool
Default = True
DEPRECATED - TODO: remove
Uses activation checkpointing from deepspeed
- **contiguous_checkpointing**: bool
Default = False
Contiguous memory checkpointing for activations.
- **checkpoint_in_cpu**: bool
Default = False
Move the activation checkpoints to CPU.
- **synchronize_each_layer**: bool
Default = False
does a synchronize at the beginning and end of each checkpointed layer.
- **profile_backward**: bool
Default = False
Enables backward pass profiling for checkpointed layers.
- **partition_activations**: bool
Default = False
Partition Activations across GPUs before checkpointing.
- **clip_grad**: float
Default = 1.0
Gradient clipping based on global L2 norm.
- **hysteresis**: int
Default = 2
hysteresis for dynamic loss scaling
- **dynamic_loss_scale**: bool
Default = None
flag indicating whether dynamic loss scale is used
- **loss_scale**: float
Default = None
Static loss scaling, positive power of 2
values can improve fp16 convergence. If None, dynamic loss scaling is used.
- **loss_scale_window**: float
Default = 1000.0
Window over which to raise/lower dynamic scale.
- **min_scale**: float
Default = 1.0
Minimum loss scale for dynamic loss scale.
- **char_level_ppl**: bool
Default = False
Whether to calculate character level perplexity as well as token level perplexity. (may incur a time cost)
- **use_mup**: bool
Default = False
Whether to use Microsoft's Mup https://github.com/microsoft/mup
- **coord_check**: bool
Default = False
Whether to generate a "coord check" plot to verify mup's implementation in neox
- **save_base_shapes**: bool
Default = False
Whether to save base shapes for mup. This will save the shapes to the path specified in base-shapes-file.
- **base_shapes_file**: str
Default = None
Path to the base shapes to save to/load from
- **mup_init_scale**: float
Default = 1.0
Initialization scale: All the parameters are multiplied by this value
- **mup_attn_temp**: float
Default = 1.0
Attention temperature: Reciprocal of the multiplier applied to the input to attention softmax
- **mup_output_temp**: float
Default = 1.0
Output temperature: Reciprocal of the multiplier applied to the input to softmax that
produces the distribution over output tokens.
- **mup_embedding_mult**: float
Default = 1.0
Scalar by which we multiply the output of the embedding layer
- **mup_rp_embedding_mult**: float
Default = 1.0
Scalar by which we multiply vectors representing relative position
- **mup_width_scale**: int
Default = 2
What to scale width by when creating the delta model for mup
## NeoXArgsDeepspeedConfig
Args for deepspeed config
Every argument included here will be included in deepspeed config json
As of Mar 8 2023, up to date compared to https://www.deepspeed.ai/docs/config-json/
- **deepspeed**: bool
Default = True
boolean flag to enable DeepSpeed (Always True)
- **train_batch_size**: int
Default = None
The effective training batch size. This is the amount of data samples that leads to one step of model update. train_batch_size is aggregated by the batch size that a single GPU processes in one forward/backward pass (a.k.a., train_step_batch_size), the gradient accumulation steps (a.k.a., gradient_accumulation_steps), and the number of GPUs.
- **train_micro_batch_size_per_gpu**: int
Default = None
Batch size to be processed by one GPU in one step (without gradient accumulation). When specified, gradient_accumulation_steps is automatically calculated using train_batch_size and number of GPUs. Should not be concurrently specified with gradient_accumulation_steps in the configuration JSON.
- **gradient_accumulation_steps**: int
Default = 1
Number of training steps to accumulate gradients before averaging and applying them. This feature is sometimes useful to improve scalability since it results in less frequent communication of gradients between steps. Another impact of this feature is the ability to train with larger batch sizes per GPU. When specified, train_step_batch_size is automatically calculated using train_batch_size and number of GPUs. Should not be concurrently specified with train_step_batch_size in the configuration JSON.
- **optimizer**: dict
Default = None
dict containing the keys type and params
type: The optimizer name. DeepSpeed natively supports Adam, AdamW, OneBitAdam, Lamb, and OneBitLamb optimizers (See here for details) and will import other optimizers from torch.
params: Dictionary of parameters to instantiate optimizer. The parameter names must match the optimizer constructor signature (e.g., for Adam).
- **scheduler**: dict
Default = None
dict containing the keys type and params
type: The scheduler name. See here (https://deepspeed.readthedocs.io/en/latest/schedulers.html) for list of support schedulers.
params: Dictionary of parameters to instantiate scheduler. The parameter names should match scheduler constructor signature.
- **fp32_allreduce**: bool
Default = False
During gradient averaging perform allreduce with 32 bit values
- **prescale_gradients**: bool
Default = False
Scale gradients before doing allreduce
- **gradient_predivide_factor**: float
Default = 1.0
Before gradient averaging predivide gradients by a specified factor, can sometimes help with fp16 stability when scaling to large numbers of GPUs
- **sparse_gradients**: bool
Default = False
Enable sparse compression of torch.nn.Embedding gradients.
- **fp16**: dict
Default = None
Configuration for using mixed precision/FP16 training that leverages NVIDIA’s Apex package.
Dictionary options as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#fp16-training-options
- **bf16**: dict
Default = None
Configuration for using bfloat16 floating-point format as an alternative to FP16. BFLOAT16 requires hardware support (e.g., NVIDIA A100).
Dictionary options as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#bfloat16-training-options
- **amp**: dict
Default = None
Configuration for using automatic mixed precision (AMP) training that leverages NVIDIA’s Apex AMP package.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#automatic-mixed-precision-amp-training-options
- **gradient_clipping**: float
Default = 1.0
Enable gradient clipping with provided value
- **zero_optimization**: dict
Default = None
Configuration for using ZeRO optimization.
Multi-level dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#zero-optimization-options
- **curriculum_learning**: dict
Default = None
- **curriculum_seqlen**: int
Default = 0
Internal var for tracking the current seqlen
- **steps_per_print**: int
Default = 10
Print train loss every N steps.
- **wall_clock_breakdown**: bool
Default = False
Enable timing of the latency of forward/backward/update training phases.
- **dump_state**: bool
Default = False
Print out state information of DeepSpeed object after initialization.
- **flops_profiler**: dict
Default = None
Configuration for using FLOPS profiler.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#flops-profiler
- **communication_data_type**: bool
Default = None
During gradient averaging, perform communication with selected data type. By default it will be determined by selected regime
- **autotuning**: dict
Default = None
Configuration for using autotuning.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#autotuning
- **activation_checkpointing**: dict
Default = None
Configuration for using activation checkpointing.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#activation-checkpointing
- **sparse_attention**: dict
Default = None
Configuration for using sparse attention.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#sparse-attention
- **data_efficiency**: dict
Default = None
Configuration for using data efficiency.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#data-efficiency
- **tensorboard**: dict
Default = None
Configuration for using tensorboard.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#monitoring-module-tensorboard-wandb-csv
- **wandb**: dict
Default = None
Configuration for using wandb.
- **csv_monitor**: dict
Default = None
Configuration for using csv_monitor.
- **elasticity**: dict
Default = None
Configuration for using elastic training.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#elastic-training-config-v01-and-v02
- **comms_logger**: dict
Default = None
Configuration for using communication logger.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#communication-logging
- **compression_training**: dict
Default = None
Configuration for using compression training.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#compression
- **checkpoint**: dict
Default = None
Configuration for using checkpointing.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#checkpoint-options
- **data_types**: dict
Default = None
Configuration for using data types.
Dictionary as described in Deepspeed documentation: https://www.deepspeed.ai/docs/config-json/#data-type-options
- **deepspeed_extra_args**: dict
Default = None
Dictionary of extra arguments to be included in the yaml config file. This can be used for any argument not included in the above list.
## NeoXArgsDeepspeedRunner
Args for deepspeed runner (deepspeed.launcher.runner).
Every argument included here will be passed as command line argument to deepspeed.launcher.runner
- **hostfile**: str
Default = None
list of hostnames / ssh aliases and the number of GPUs per host
example file contents:
worker-1 slots=4
worker-2 slots=4
127.0.0 slots=4
127.0.1 slots=4
- **include**: str
Default = None
Specify hardware resources to use during execution. String format is `NODE_SPEC[@NODE_SPEC ...]` where `NODE_SPEC=NAME[:SLOT[,SLOT ...]]`. If `:SLOT` is omitted, include all slots on that host. Example: `"worker-0@worker-1:0,2"` will use all slots. on `worker-0` and slots `[0, 2]` on `worker-1`.
- **exclude**: str
Default = None
Specify hardware resources to NOT use during execution. Same format as include
- **num_nodes**: int
Default = -1
Total number of worker nodes to run on, this will use the top N hosts from the given hostfile. -1 will use all.
- **num_gpus**: int
Default = None
Max number of GPUs to use on each node, will use [0:N) GPU ids on each node. None / not specifying a value will use all.
- **master_port**: int
Default = 29500
Port used by PyTorch distributed for communication during training.
- **master_addr**: str
Default = None
IP address of node 0, will be inferred via 'hostname -I' if not specified.
- **launcher**: typing.Literal['pdsh', 'openmpi', 'mvapich', 'slurm']
Default = pdsh
Launcher backend for multi-node training. Options currently include PDSH, OpenMPI, MVAPICH.
- **force_multi**: bool
Default = False
Force multi-node training even if only one node is specified.
- **detect_nvlink_pairs**: bool
Default = False
If true, autodetects nvlink pairs and remaps cuda visible devices to place them next to each other. This is an Eleuther addition to deepspeed, and should speed up model parallel training on setups with nvlink pairs when mp=2.
- **autotuning_run**: str
Default = None
Either "tune", "run", or `None`.
- **no_ssh_check**: bool
Default = False
If true, overrides the default check where DeepSpeed confirms that the headnode is accessible via ssh.
- **comment**: str
Default = None
Adds a `--comment` to the DeepSpeed launch command. In DeeperSpeed this is passed on to the SlurmLauncher as well. Sometimes necessary for cluster rules, or so I've heard.
- **account**: str
Default = None
Adds a `--account` to the DeepSpeed launch command. In DeeperSpeed this is passed on to the SlurmLauncher as well. Sometimes necessary for cluster rules, or so I've heard.
|