File size: 8,435 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
import tqdm


def convert_model(hf_state_dict, hf_config, tp_ranks):
    conv_state_dicts = [{} for _ in range(tp_ranks)]
    # get embeddings...
    for i, chunk in enumerate(
        torch.chunk(hf_state_dict["model.embed_tokens.weight"], tp_ranks, dim=0)
    ):
        conv_state_dicts[i][
            "sequential.0.word_embeddings.weight"
        ] = chunk.clone().detach()
    print(
        "model.embed_tokens.weight",
        hf_state_dict["model.embed_tokens.weight"].shape,
        "sequential.0.word_embeddings.weight",
        conv_state_dicts[0]["sequential.0.word_embeddings.weight"].shape,
    )
    # Get config data...
    num_kv_heads = hf_config.num_key_value_heads
    num_q_heads = hf_config.num_attention_heads
    head_dim = hf_config.hidden_size // num_q_heads
    # do layers...
    for layer_num in tqdm.tqdm(range(model.model.config.num_hidden_layers)):
        # --- attention ---
        # Output first since it's a simple row parallel...
        for i, chunk in enumerate(
            torch.chunk(
                hf_state_dict[f"model.layers.{layer_num}.self_attn.o_proj.weight"],
                tp_ranks,
                dim=1,
            )
        ):
            conv_state_dicts[i][
                f"sequential.{layer_num+2}.attention.dense.weight"
            ] = chunk.clone().detach()
        print(
            f"model.layers.{layer_num}.self_attn.o_proj.weight",
            hf_state_dict[f"model.layers.{layer_num}.self_attn.o_proj.weight"].shape,
            f"sequential.{layer_num+2}.attention.dense.weight",
            conv_state_dicts[0][
                f"sequential.{layer_num+2}.attention.dense.weight"
            ].shape,
        )
        # Now for attention...
        # Split into heads...
        q = hf_state_dict[f"model.layers.{layer_num}.self_attn.q_proj.weight"]
        k = hf_state_dict[f"model.layers.{layer_num}.self_attn.k_proj.weight"]
        v = hf_state_dict[f"model.layers.{layer_num}.self_attn.v_proj.weight"]
        # The GQA code splits the heads by the num_q_heads so we also do that
        # here to ensure it matches...
        q = q.view(num_q_heads, -1, q.shape[-1])
        k = k.view(num_q_heads, -1, q.shape[-1])
        v = v.view(num_q_heads, -1, q.shape[-1])
        # Chunk for tensor parallelism...
        for i, q_chunk, k_chunk, v_chunk in zip(
            range(tp_ranks),
            torch.chunk(q, tp_ranks, dim=0),
            torch.chunk(k, tp_ranks, dim=0),
            torch.chunk(v, tp_ranks, dim=0),
        ):
            # Need to join the heads across q, k, v...
            conv_state_dicts[i][
                f"sequential.{layer_num+2}.attention.query_key_value.weight"
            ] = (
                torch.cat([q_chunk, k_chunk, v_chunk], dim=1)
                .view(-1, q.shape[-1])
                .clone()
                .detach()
            )
        print(
            f"model.layers.{layer_num}.self_attn.(q/k/v)_proj.weight",
            hf_state_dict[f"model.layers.{layer_num}.self_attn.q_proj.weight"].shape,
            hf_state_dict[f"model.layers.{layer_num}.self_attn.k_proj.weight"].shape,
            hf_state_dict[f"model.layers.{layer_num}.self_attn.v_proj.weight"].shape,
            f"sequential.{layer_num+2}.attention.query_key_value.weight",
            conv_state_dicts[0][
                f"sequential.{layer_num+2}.attention.query_key_value.weight"
            ].shape,
        )
        # --- mlp ---
        # Do SwiGLU weights...
        # w1...
        for i, (w1, w3) in enumerate(
            zip(
                torch.chunk(
                    hf_state_dict[f"model.layers.{layer_num}.mlp.gate_proj.weight"],
                    tp_ranks,
                    dim=0,
                ),
                torch.chunk(
                    hf_state_dict[f"model.layers.{layer_num}.mlp.up_proj.weight"],
                    tp_ranks,
                    dim=0,
                ),
            )
        ):
            conv_state_dicts[i][
                f"sequential.{layer_num+2}.mlp.linear1.weight"
            ] = torch.cat([w3.clone().detach(), w1.clone().detach()], dim=0)
        print(
            f"model.layers.{layer_num}.mlp.gate_proj.weight",
            hf_state_dict[f"model.layers.{layer_num}.mlp.gate_proj.weight"].shape,
            f"model.layers.{layer_num}.mlp.up_proj.weight",
            hf_state_dict[f"model.layers.{layer_num}.mlp.up_proj.weight"].shape,
            f"sequential.{layer_num+2}.mlp.w3.weight",
            conv_state_dicts[0][f"sequential.{layer_num+2}.mlp.linear1.weight"].shape,
        )
        # w2 (output)...
        for i, chunk in enumerate(
            torch.chunk(
                hf_state_dict[f"model.layers.{layer_num}.mlp.down_proj.weight"],
                tp_ranks,
                dim=1,
            )
        ):
            conv_state_dicts[i][
                f"sequential.{layer_num+2}.mlp.linear2.weight"
            ] = chunk.clone().detach()
        print(
            f"model.layers.{layer_num}.mlp.down_proj.weight",
            hf_state_dict[f"model.layers.{layer_num}.mlp.down_proj.weight"].shape,
            f"sequential.{layer_num+2}.mlp.linear2.weight",
            conv_state_dicts[0][f"sequential.{layer_num+2}.mlp.linear2.weight"].shape,
        )
        # --- norm ---
        for i in range(tp_ranks):
            conv_state_dicts[i][f"sequential.{layer_num+2}.input_layernorm.scale"] = (
                hf_state_dict[f"model.layers.{layer_num}.input_layernorm.weight"]
                .clone()
                .detach()
            )
            conv_state_dicts[i][
                f"sequential.{layer_num+2}.post_attention_layernorm.scale"
            ] = (
                hf_state_dict[
                    f"model.layers.{layer_num}.post_attention_layernorm.weight"
                ]
                .clone()
                .detach()
            )

    # Get final ln/linear....
    index = model.model.config.num_hidden_layers + 3
    for i in range(tp_ranks):
        conv_state_dicts[i][f"sequential.{index}.norm.scale"] = (
            hf_state_dict["model.norm.weight"].clone().detach()
        )
    index += 1
    # do output...
    for i, chunk in enumerate(
        torch.chunk(hf_state_dict["lm_head.weight"], tp_ranks, dim=0)
    ):
        conv_state_dicts[i][
            f"sequential.{index}.final_linear.weight"
        ] = chunk.clone().detach()
    print(
        "lm_head.weight",
        hf_state_dict["lm_head.weight"].shape,
        f"sequential.{index}.final_linear.weight",
        conv_state_dicts[0][f"sequential.{index}.final_linear.weight"].shape,
    )
    return conv_state_dicts


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--tp", type=int, default=1, help="Number of tensor parallelism ranks"
    )
    parser.add_argument(
        "--pp", type=int, default=0, help="Number of pipeline parallelism stages"
    )
    parser.add_argument("--model", type=str, default="gpt2", help="HF model name")
    parser.add_argument(
        "--model_path", type=str, default=None, help="Path to save model"
    )
    args = parser.parse_args()
    assert args.pp == 0, "Pipeline parallelism not supported yet"
    tokenizer = AutoTokenizer.from_pretrained(args.model).save_pretrained(
        args.model_path + "/tokenizer"
    )
    model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype="auto")
    state_dict = model.state_dict()
    for key in state_dict.keys():
        print(key, state_dict[key].shape)
    os.makedirs(args.model_path, exist_ok=True)
    # Setup model directory...
    os.makedirs(f"{args.model_path}/0", exist_ok=True)
    # Save the latest file so neox can figure out where to grab the weights...
    with open(f"{args.model_path}/latest", "w") as f:
        f.write("0")
    # Convert the model...
    tp_state_dicts = convert_model(state_dict, model.model.config, args.tp)
    for i in range(args.tp):
        torch.save(
            {
                "dp_world_size": 1,
                "mp_world_size": args.tp,
                "optimizer": {},
                "global_steps": 1,
                "skipped_steps": 1,
                "iteration": 1,
                "module": tp_state_dicts[i],
            },
            f"{args.model_path}/0/mp_rank_{i:02d}_model_states.pt",
        )