|
import torch |
|
import json |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from datasets import load_dataset |
|
from peft import LoraConfig, PeftModel |
|
|
|
device_map = "auto" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"/path/to/meta-llama3-8b", |
|
|
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map=device_map, |
|
) |
|
|
|
model = PeftModel.from_pretrained(model, "/path/to/llama3-8b-adapter", device_map=device_map) |
|
model = model.merge_and_unload() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("/path/to/meta-llama3-8b", trust_remote_code=True) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id + 1 |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=4096, do_sample=False) |
|
print("Padding side:",tokenizer.padding_side) |
|
val_dataset = load_dataset("csv", data_files={'val':'/path/to/actseq-val-new.csv'})["val"] |
|
test_dataset = load_dataset("csv", data_files={'test':'/path/to/actseq-test-new.csv'})["test"] |
|
|
|
|
|
def formatting_prompts_func(example): |
|
output_texts = [] |
|
for i in range(len(example['dial_with_actions'])): |
|
text = f"<|begin_of_text|>Predict the action sequence (AS) for the Minecraft excerpt:\n {example['dial_with_actions'][i]}\n ### AS:" |
|
output_texts.append(text) |
|
return output_texts |
|
|
|
|
|
val_texts = formatting_prompts_func(val_dataset) |
|
test_texts = formatting_prompts_func(test_dataset) |
|
|
|
print("Val Length:", len(val_texts)) |
|
print("Test Length:", len(test_texts)) |
|
|
|
f = open("/path/to/val-output-file","w") |
|
|
|
for text in val_texts: |
|
print(text) |
|
print(pipe(text)[0]["generated_text"], file=f) |
|
|
|
f.close() |
|
|
|
f = open("/path/to/test-output-file","w") |
|
|
|
for text in test_texts: |
|
print(text) |
|
print(pipe(text)[0]["generated_text"], file=f) |
|
|
|
f.close() |
|
|