akridge commited on
Commit
c8f5cc3
·
verified ·
1 Parent(s): 4666887

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model:
5
+ - Ultralytics/YOLO11
6
+ tags:
7
+ - yolo
8
+ - yolo11
9
+ - yolo11n
10
+ - urchin
11
+ - sea
12
+ - marine-detection
13
+ pipeline_tag: object-detection
14
+ ---
15
+ # Yolo11n Sea Urchin Detector
16
+
17
+ ## Model Details / Overview
18
+ This model was trained to detect sea urchins using the YOLO11 architecture. It leverages data from multiple open datasets to identify and locate urchins in various underwater images.
19
+
20
+ - **Model Architecture**: YOLO11n
21
+ - **Task**: Object Detection (Urchin Detection)
22
+ - **Footage Type**: Underwater Footage (Color and Grayscale)
23
+ - **Classes**: 1 (urchin)
24
+
25
+ ## Test Results
26
+ ![results](./results.jpg)
27
+
28
+ ## Model Weights
29
+ The model's weights can be found [here](./yolo11n_urchin_trained.pt)
30
+
31
+ # Intended Use
32
+ - Real-time detections on underwater footage
33
+ - Post-processed video/imagery for detecting sea urchins in underwater environments
34
+
35
+ # Factors
36
+ ### Model Performance
37
+ - Multi-source Dataset: Trained on datasets that include color and urchin images from various angles, enabling the model to perform effectively across different visual inputs.
38
+ - Model Architecture (YOLO11n): Lightweight and optimized for real-time urchin detection in underwater footage.
39
+ - Training Data: The dataset includes a mix of color and grayscale images, split into 70% training, 20% validation, and 10% test data.
40
+ - Training Parameters: Configured with 50 epochs, a 0.001 learning rate, and 640x640 image size for optimal model convergence.
41
+
42
+ ## Datasets
43
+ The training data was collected, parsed and organized from open sources:
44
+ 1. **[Orange-OpenSource Marine-Detect](https://github.com/Orange-OpenSource/marine-detect)**
45
+ 2. **[Roboflow - Sakana Urchins CJLib](https://universe.roboflow.com/sakana/urchins-cjlib)**
46
+
47
+ - **Roboflow Details**:
48
+ - **Workspace**: sakana
49
+ - **Project**: urchins-cjlib
50
+ - **Version**: 1
51
+ - **License**: CC BY 4.0
52
+ - **URL**: [https://universe.roboflow.com/sakana/urchins-cjlib/dataset/1](https://universe.roboflow.com/sakana/urchins-cjlib/dataset/1)
53
+
54
+ ### Dataset Composition:
55
+ - **Training Images**: 1169
56
+ - **Validation Images**: 334
57
+ - **Test Images**: 168
58
+ - **Train/Val/Test Split Ratio**: 7:2:1
59
+
60
+ ## Metrics
61
+ Below are the key metrics from the model evaluation on the validation set:
62
+
63
+ - **Precision**: 0.885
64
+ - **Recall**: 0.861
65
+ - **mAP50**: 0.937
66
+ - **mAP50-95**: 0.852
67
+
68
+ ## Training Validation Results
69
+ ### Training and Validation Losses
70
+ ![Training and Validation Losses](./train/results.png)
71
+
72
+ ### Confusion Matrix
73
+ ![Confusion Matrix](./train/confusion_matrix.png)
74
+
75
+ ### Precision-Recall Curve
76
+ ![Precision-Recall Curve](./train/PR_curve.png)
77
+
78
+ ### F1 Score Curve
79
+ ![F1 Score Curve](./train/F1_curve.png)
80
+
81
+ ## Training Configuration
82
+ - **Model Weights File**: `yolo11n_urchin_trained.pt`
83
+ - **Number of Epochs**: 50
84
+ - **Learning Rate**: 0.001
85
+ - **Batch Size**: 32
86
+ - **Image Size**: 640x640
87
+
88
+ ## Deployment
89
+ ### How to Use the Model
90
+
91
+ To use the trained model, follow these steps:
92
+
93
+ 1. **Load the Model**:
94
+ ```python
95
+ from ultralytics import YOLO
96
+
97
+ # Load the model
98
+ model = YOLO("yolo11n_urchin_trained.pt")
99
+
100
+ ## Limitations
101
+ The model was trained on a mix of open source images. It may not generalize well to other environments or non-marine scenarios. Additionally, environmental variations, occlusions, or poor lighting may affect performance.
102
+
103
+ ## Additional Notes:
104
+ Dataset Sources:
105
+ - Two datasets were combined to improve model robustness, allowing the model to adapt to varying lighting and coloration conditions.
106
+ Ethical Considerations:
107
+ - The detection results should be validated before using them for critical applications. The model’s performance in new environments might vary, and it may have biases if certain types of sea urchins were underrepresented in the training datasets.