akolmykov commited on
Commit
56ffdbf
·
1 Parent(s): 419ba08

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.94 +/- 18.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e756b7ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e756b7d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e756b7dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e756b7e50>", "_build": "<function ActorCriticPolicy._build at 0x7f2e756b7ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e756b7f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e756bc040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e756bc0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e756bc160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e756bc1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e756bc280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e756b2780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1003904, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671281789348327458, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB8kD1pkjW8Jde5POpTsTyE86g9iB+QvQAAgD8AAIA/QPvQvV6fqj1JRTE+1J6Tvje/zjzz3JY8AAAAAAAAAADNSsu8KbB7up8dGLdbIce1AOpgum0aPTYAAIA/AACAPwBp7D19IAM/r++AvpMYor6pBwG9emmPvQAAAAAAAAAAs1mkvcOhNroF4p06QkuQNhzP9Tlll7W5AACAPwAAgD9mfFe8cS1quVY7HTn6f7M04JEVPCI5O7gAAIA/AACAP5oVKrw42NA8bhCnPXuca75F+Iu87rZPPQAAAAAAAAAA5j0gvsNxXbpCt4o7ufLfOKoFrDvT6zC6AACAPwAAgD9m7he8eFi8Pr3xD74SIZ2+Mv49POLfYDwAAAAAAAAAAI3Tgz1c82y6uErsuTCNgbbh4Yi5IB0KOQAAgD8AAIA/83eIvfZUObrcBwU5VltlNhUDnbm3HBy4AACAPwAAgD9NeEC9j5ZGutCwurtybMk4v/pSugLS5TgAAIA/AACAPw3knb1SsPC5u6mpOwDfyzh6qmY7eyjJNwAAgD8AAIA/ze73vI/OMrrGMkc7jon/NvpKsDrY1tU1AACAPwAAgD+NwrM9uAaOuWbHI7xSz202JkmFubWh27UAAIA/AACAP5r0U70UjJO6LlHautUU1rUNRd25Ff78OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0039039999999999075, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrg6AuCsIYkCUhpRSlIwBbJRN6AOMAXSUR0CSComI0qH5dX2UKGgGaAloD0MIwlHy6px1YkCUhpRSlGgVTegDaBZHQJIPHkBCD291fZQoaAZoCWgPQwjpDIy8rMFeQJSGlFKUaBVN6ANoFkdAkg8xMzuWr3V9lChoBmgJaA9DCCqRRC+j/mNAlIaUUpRoFU3oA2gWR0CSEj9G7SRbdX2UKGgGaAloD0MIrweT4uNCYUCUhpRSlGgVTegDaBZHQJIVPrC3w1B1fZQoaAZoCWgPQwgAN4sXi+BiQJSGlFKUaBVN6ANoFkdAkhX/IfbKzXV9lChoBmgJaA9DCI4fKo2YDF1AlIaUUpRoFU3oA2gWR0CSGKFQEZBLdX2UKGgGaAloD0MICmgibPgnYkCUhpRSlGgVTegDaBZHQJIe/557gKp1fZQoaAZoCWgPQwhB1lOrr5lkQJSGlFKUaBVN6ANoFkdAkiZ3w9aEBnV9lChoBmgJaA9DCPzh57+Hf2dAlIaUUpRoFU3oA2gWR0CSKMe4kNWmdX2UKGgGaAloD0MI9RQ5RNzbZUCUhpRSlGgVTegDaBZHQJIpVbu+h5B1fZQoaAZoCWgPQwjRXKeRlnlhQJSGlFKUaBVN6ANoFkdAki3pFw1iv3V9lChoBmgJaA9DCOdwrfawi2NAlIaUUpRoFU3oA2gWR0CSLup9ZzPsdX2UKGgGaAloD0MIuK8D5wxyaECUhpRSlGgVTegDaBZHQJIz8tEofCB1fZQoaAZoCWgPQwhz9WOT/HRkQJSGlFKUaBVN6ANoFkdAkju+MAFPi3V9lChoBmgJaA9DCDQvh933fmNAlIaUUpRoFU3oA2gWR0CSPVigkC3gdX2UKGgGaAloD0MInfLoRljMZkCUhpRSlGgVTegDaBZHQJJI2yTpxFR1fZQoaAZoCWgPQwi2FJD2P85hQJSGlFKUaBVN6ANoFkdAkk1X1BdD6XV9lChoBmgJaA9DCNjXutSIsmJAlIaUUpRoFU3oA2gWR0CSTWu/UONHdX2UKGgGaAloD0MIQnkfR/NGZkCUhpRSlGgVTegDaBZHQJJQbhgmZ3N1fZQoaAZoCWgPQwjv5NNjWw9fQJSGlFKUaBVN6ANoFkdAklOEal1r7HV9lChoBmgJaA9DCBstB3qobmRAlIaUUpRoFU3oA2gWR0CSVEJQLux9dX2UKGgGaAloD0MI8x5nmrAPQECUhpRSlGgVS9NoFkdAklcVNL127nV9lChoBmgJaA9DCOyEl+DUpWJAlIaUUpRoFU3oA2gWR0CSV2DIRywOdX2UKGgGaAloD0MI8pVASmwHZ0CUhpRSlGgVTegDaBZHQJJezV4HHFR1fZQoaAZoCWgPQwj2Rq0wfc9QQJSGlFKUaBVLw2gWR0CSYChLoOhCdX2UKGgGaAloD0MI4PdvXpz2UECUhpRSlGgVS9BoFkdAkmA3jp9qlHV9lChoBmgJaA9DCCLFAImmSWBAlIaUUpRoFU3oA2gWR0CSZrSRr8BNdX2UKGgGaAloD0MIYRxcOuYcX0CUhpRSlGgVTegDaBZHQJJpFIUahpR1fZQoaAZoCWgPQwhTA83nXDBmQJSGlFKUaBVN6ANoFkdAkmmhXwLE1nV9lChoBmgJaA9DCFO0ci8wS15AlIaUUpRoFU3oA2gWR0CSbfjXWe6JdX2UKGgGaAloD0MI16GakqyrYkCUhpRSlGgVTegDaBZHQJJu6YG+sYF1fZQoaAZoCWgPQwjjqrLvir5kQJSGlFKUaBVN6ANoFkdAkqxvPgNwznV9lChoBmgJaA9DCAzJycQtoWJAlIaUUpRoFU3oA2gWR0CSs4FaB7NTdX2UKGgGaAloD0MItmeWBKiQYUCUhpRSlGgVTegDaBZHQJK065rgwXZ1fZQoaAZoCWgPQwjZX3ZPHtBmQJSGlFKUaBVN6ANoFkdAksNNFvybx3V9lChoBmgJaA9DCCiZnNqZ4WJAlIaUUpRoFU3oA2gWR0CSw182rGR3dX2UKGgGaAloD0MIdPBMaJJCXkCUhpRSlGgVTegDaBZHQJLGEQ4CIUJ1fZQoaAZoCWgPQwgdyHpqdXZjQJSGlFKUaBVN6ANoFkdAksykGmk30nV9lChoBmgJaA9DCHRGlPYGkV9AlIaUUpRoFU3oA2gWR0CSzPHLidaudX2UKGgGaAloD0MICTiEKjUIZECUhpRSlGgVTegDaBZHQJLUoZR8+id1fZQoaAZoCWgPQwhKB+v/nMVjQJSGlFKUaBVN6ANoFkdAktYOIZZSvXV9lChoBmgJaA9DCM3lBkOd6GVAlIaUUpRoFU3oA2gWR0CS1h/9YOlPdX2UKGgGaAloD0MIvTrHgGwmYkCUhpRSlGgVTegDaBZHQJLcZBqsU7F1fZQoaAZoCWgPQwjP2JdsvMVlQJSGlFKUaBVN6ANoFkdAkt7PJV81GnV9lChoBmgJaA9DCJxrmKFx2GJAlIaUUpRoFU3oA2gWR0CS31xnWattdX2UKGgGaAloD0MILSEf9GzoY0CUhpRSlGgVTegDaBZHQJLkBe5WilB1fZQoaAZoCWgPQwj3Peqv1wRgQJSGlFKUaBVN6ANoFkdAkuUPj81n/XV9lChoBmgJaA9DCJwYkpOJMF1AlIaUUpRoFU3oA2gWR0CS6nAPNFBqdX2UKGgGaAloD0MIWHVWC2wuZECUhpRSlGgVTegDaBZHQJLyYep4rz51fZQoaAZoCWgPQwjdlsgFZ3hdQJSGlFKUaBVN6ANoFkdAkvQED2alUXV9lChoBmgJaA9DCERMiSR69GBAlIaUUpRoFU3oA2gWR0CTA/HKOktVdX2UKGgGaAloD0MI5Zgs7r8KZECUhpRSlGgVTegDaBZHQJMEBYlpoK51fZQoaAZoCWgPQwh1WyIXHP9kQJSGlFKUaBVN6ANoFkdAkwbdDIBBA3V9lChoBmgJaA9DCDJWm/9X92ZAlIaUUpRoFU3oA2gWR0CTDeUHIIWydX2UKGgGaAloD0MI22/tRMk6Y0CUhpRSlGgVTegDaBZHQJMONHEuQIV1fZQoaAZoCWgPQwhRpWYPNEpjQJSGlFKUaBVN6ANoFkdAkxW7tJFspHV9lChoBmgJaA9DCH7GhQOhY2dAlIaUUpRoFU3oA2gWR0CTFyobn5i3dX2UKGgGaAloD0MIzJcXYJ/fY0CUhpRSlGgVTegDaBZHQJMXO/L1VYJ1fZQoaAZoCWgPQwgxC+2c5rxjQJSGlFKUaBVN6ANoFkdAkx05LqUu+XV9lChoBmgJaA9DCJ3y6EbYjmJAlIaUUpRoFU3oA2gWR0CTH4dWyTpxdX2UKGgGaAloD0MI3lUPmAeTYUCUhpRSlGgVTegDaBZHQJMgC7oSteV1fZQoaAZoCWgPQwg4h2u1h1E8QJSGlFKUaBVLxGgWR0CTIslLeyiVdX2UKGgGaAloD0MIwap6+R0UZUCUhpRSlGgVTegDaBZHQJMkP2VVxS51fZQoaAZoCWgPQwihFK3cC2BgQJSGlFKUaBVN6ANoFkdAkyUzujRD1HV9lChoBmgJaA9DCAtioGvfPWNAlIaUUpRoFU3oA2gWR0CTXpJQ+EAYdX2UKGgGaAloD0MIn+i68APeaECUhpRSlGgVTegDaBZHQJNmEC3gDRt1fZQoaAZoCWgPQwiPGD230J5iQJSGlFKUaBVN6ANoFkdAk2eZxrBTGnV9lChoBmgJaA9DCKmG/Z5YsU5AlIaUUpRoFUuyaBZHQJNxnN4Z/Ct1fZQoaAZoCWgPQwhNoIhFjC5kQJSGlFKUaBVN6ANoFkdAk3bYU8FINHV9lChoBmgJaA9DCLngDP7+1GRAlIaUUpRoFU3oA2gWR0CTduvnKW9ldX2UKGgGaAloD0MIOV/svXhxY0CUhpRSlGgVTegDaBZHQJN5nmbLEDR1fZQoaAZoCWgPQwh64jlbQAxlQJSGlFKUaBVN6ANoFkdAk3/VE7W/anV9lChoBmgJaA9DCLrYtFIIRGZAlIaUUpRoFU3oA2gWR0CTgCkk8ifQdX2UKGgGaAloD0MI/FHUmXuYSUCUhpRSlGgVS7FoFkdAk4F1og3cYnV9lChoBmgJaA9DCOhOsP86imRAlIaUUpRoFU3oA2gWR0CTh3717IDHdX2UKGgGaAloD0MI5nXEIRv8YUCUhpRSlGgVTegDaBZHQJOI3qzJIUd1fZQoaAZoCWgPQwgUI0vmWG5GQJSGlFKUaBVLxWgWR0CTjZ57PY4AdX2UKGgGaAloD0MIYmafxygVYkCUhpRSlGgVTegDaBZHQJOPbps41gp1fZQoaAZoCWgPQwh5H0dz5KdjQJSGlFKUaBVN6ANoFkdAk5HDS1E3KnV9lChoBmgJaA9DCIyd8BKc2mFAlIaUUpRoFU3oA2gWR0CTkkwiaAnVdX2UKGgGaAloD0MIZ2X7kLf5aECUhpRSlGgVTegDaBZHQJOVFtelbeN1fZQoaAZoCWgPQwifk943vsZiQJSGlFKUaBVN6ANoFkdAk5amMCLde3V9lChoBmgJaA9DCOF9VS5U1WVAlIaUUpRoFU3oA2gWR0CTl43wCr93dX2UKGgGaAloD0MIMBAEyNApZECUhpRSlGgVTegDaBZHQJOcL/S6UaB1fZQoaAZoCWgPQwh1sP7PYSJMQJSGlFKUaBVLtGgWR0CToXHRCx/vdX2UKGgGaAloD0MIaM2PvzQqZkCUhpRSlGgVTegDaBZHQJOk0TlDF611fZQoaAZoCWgPQwiwVYLFYVxhQJSGlFKUaBVN6ANoFkdAk64B1xKg7HV9lChoBmgJaA9DCPZ+ox03HWJAlIaUUpRoFU3oA2gWR0CTsoY+jdpJdX2UKGgGaAloD0MINe1imum9YECUhpRSlGgVTegDaBZHQJO1Dt9hJAd1fZQoaAZoCWgPQwhCIQIOIaZlQJSGlFKUaBVN6ANoFkdAk7tCu6mO2nV9lChoBmgJaA9DCF8mipA6/2RAlIaUUpRoFU3oA2gWR0CTu40jkdWAdX2UKGgGaAloD0MIpwcFpeiCZUCUhpRSlGgVTegDaBZHQJPC1liBoVV1fZQoaAZoCWgPQwhgzJasCrVkQJSGlFKUaBVN6ANoFkdAk8Qo7q6e5HV9lChoBmgJaA9DCNo6ONibaGJAlIaUUpRoFU3oA2gWR0CTyK1P3ztkdX2UKGgGaAloD0MINdJSebv6ZUCUhpRSlGgVTegDaBZHQJPKLLt/nW91fZQoaAZoCWgPQwihL739OYNmQJSGlFKUaBVN6ANoFkdAk8xNupCKJnV9lChoBmgJaA9DCHSV7q6zdmdAlIaUUpRoFU3oA2gWR0CTzMjXFtKqdX2UKGgGaAloD0MIUz9vKtITYECUhpRSlGgVTegDaBZHQJPPZmmLtNV1fZQoaAZoCWgPQwiQoWMHFZFiQJSGlFKUaBVN6ANoFkdAk9C5dSl3yXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "n_steps": 2024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 69, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08abb045ac215354f3c1522120f522b196eaf09bf13b471abce10187d91ec01d
3
+ size 147211
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e756b7ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e756b7d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e756b7dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e756b7e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2e756b7ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2e756b7f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e756bc040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2e756bc0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e756bc160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e756bc1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e756bc280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2e756b2780>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1003904,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671281789348327458,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB8kD1pkjW8Jde5POpTsTyE86g9iB+QvQAAgD8AAIA/QPvQvV6fqj1JRTE+1J6Tvje/zjzz3JY8AAAAAAAAAADNSsu8KbB7up8dGLdbIce1AOpgum0aPTYAAIA/AACAPwBp7D19IAM/r++AvpMYor6pBwG9emmPvQAAAAAAAAAAs1mkvcOhNroF4p06QkuQNhzP9Tlll7W5AACAPwAAgD9mfFe8cS1quVY7HTn6f7M04JEVPCI5O7gAAIA/AACAP5oVKrw42NA8bhCnPXuca75F+Iu87rZPPQAAAAAAAAAA5j0gvsNxXbpCt4o7ufLfOKoFrDvT6zC6AACAPwAAgD9m7he8eFi8Pr3xD74SIZ2+Mv49POLfYDwAAAAAAAAAAI3Tgz1c82y6uErsuTCNgbbh4Yi5IB0KOQAAgD8AAIA/83eIvfZUObrcBwU5VltlNhUDnbm3HBy4AACAPwAAgD9NeEC9j5ZGutCwurtybMk4v/pSugLS5TgAAIA/AACAPw3knb1SsPC5u6mpOwDfyzh6qmY7eyjJNwAAgD8AAIA/ze73vI/OMrrGMkc7jon/NvpKsDrY1tU1AACAPwAAgD+NwrM9uAaOuWbHI7xSz202JkmFubWh27UAAIA/AACAP5r0U70UjJO6LlHautUU1rUNRd25Ff78OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0039039999999999075,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrg6AuCsIYkCUhpRSlIwBbJRN6AOMAXSUR0CSComI0qH5dX2UKGgGaAloD0MIwlHy6px1YkCUhpRSlGgVTegDaBZHQJIPHkBCD291fZQoaAZoCWgPQwjpDIy8rMFeQJSGlFKUaBVN6ANoFkdAkg8xMzuWr3V9lChoBmgJaA9DCCqRRC+j/mNAlIaUUpRoFU3oA2gWR0CSEj9G7SRbdX2UKGgGaAloD0MIrweT4uNCYUCUhpRSlGgVTegDaBZHQJIVPrC3w1B1fZQoaAZoCWgPQwgAN4sXi+BiQJSGlFKUaBVN6ANoFkdAkhX/IfbKzXV9lChoBmgJaA9DCI4fKo2YDF1AlIaUUpRoFU3oA2gWR0CSGKFQEZBLdX2UKGgGaAloD0MICmgibPgnYkCUhpRSlGgVTegDaBZHQJIe/557gKp1fZQoaAZoCWgPQwhB1lOrr5lkQJSGlFKUaBVN6ANoFkdAkiZ3w9aEBnV9lChoBmgJaA9DCPzh57+Hf2dAlIaUUpRoFU3oA2gWR0CSKMe4kNWmdX2UKGgGaAloD0MI9RQ5RNzbZUCUhpRSlGgVTegDaBZHQJIpVbu+h5B1fZQoaAZoCWgPQwjRXKeRlnlhQJSGlFKUaBVN6ANoFkdAki3pFw1iv3V9lChoBmgJaA9DCOdwrfawi2NAlIaUUpRoFU3oA2gWR0CSLup9ZzPsdX2UKGgGaAloD0MIuK8D5wxyaECUhpRSlGgVTegDaBZHQJIz8tEofCB1fZQoaAZoCWgPQwhz9WOT/HRkQJSGlFKUaBVN6ANoFkdAkju+MAFPi3V9lChoBmgJaA9DCDQvh933fmNAlIaUUpRoFU3oA2gWR0CSPVigkC3gdX2UKGgGaAloD0MInfLoRljMZkCUhpRSlGgVTegDaBZHQJJI2yTpxFR1fZQoaAZoCWgPQwi2FJD2P85hQJSGlFKUaBVN6ANoFkdAkk1X1BdD6XV9lChoBmgJaA9DCNjXutSIsmJAlIaUUpRoFU3oA2gWR0CSTWu/UONHdX2UKGgGaAloD0MIQnkfR/NGZkCUhpRSlGgVTegDaBZHQJJQbhgmZ3N1fZQoaAZoCWgPQwjv5NNjWw9fQJSGlFKUaBVN6ANoFkdAklOEal1r7HV9lChoBmgJaA9DCBstB3qobmRAlIaUUpRoFU3oA2gWR0CSVEJQLux9dX2UKGgGaAloD0MI8x5nmrAPQECUhpRSlGgVS9NoFkdAklcVNL127nV9lChoBmgJaA9DCOyEl+DUpWJAlIaUUpRoFU3oA2gWR0CSV2DIRywOdX2UKGgGaAloD0MI8pVASmwHZ0CUhpRSlGgVTegDaBZHQJJezV4HHFR1fZQoaAZoCWgPQwj2Rq0wfc9QQJSGlFKUaBVLw2gWR0CSYChLoOhCdX2UKGgGaAloD0MI4PdvXpz2UECUhpRSlGgVS9BoFkdAkmA3jp9qlHV9lChoBmgJaA9DCCLFAImmSWBAlIaUUpRoFU3oA2gWR0CSZrSRr8BNdX2UKGgGaAloD0MIYRxcOuYcX0CUhpRSlGgVTegDaBZHQJJpFIUahpR1fZQoaAZoCWgPQwhTA83nXDBmQJSGlFKUaBVN6ANoFkdAkmmhXwLE1nV9lChoBmgJaA9DCFO0ci8wS15AlIaUUpRoFU3oA2gWR0CSbfjXWe6JdX2UKGgGaAloD0MI16GakqyrYkCUhpRSlGgVTegDaBZHQJJu6YG+sYF1fZQoaAZoCWgPQwjjqrLvir5kQJSGlFKUaBVN6ANoFkdAkqxvPgNwznV9lChoBmgJaA9DCAzJycQtoWJAlIaUUpRoFU3oA2gWR0CSs4FaB7NTdX2UKGgGaAloD0MItmeWBKiQYUCUhpRSlGgVTegDaBZHQJK065rgwXZ1fZQoaAZoCWgPQwjZX3ZPHtBmQJSGlFKUaBVN6ANoFkdAksNNFvybx3V9lChoBmgJaA9DCCiZnNqZ4WJAlIaUUpRoFU3oA2gWR0CSw182rGR3dX2UKGgGaAloD0MIdPBMaJJCXkCUhpRSlGgVTegDaBZHQJLGEQ4CIUJ1fZQoaAZoCWgPQwgdyHpqdXZjQJSGlFKUaBVN6ANoFkdAksykGmk30nV9lChoBmgJaA9DCHRGlPYGkV9AlIaUUpRoFU3oA2gWR0CSzPHLidaudX2UKGgGaAloD0MICTiEKjUIZECUhpRSlGgVTegDaBZHQJLUoZR8+id1fZQoaAZoCWgPQwhKB+v/nMVjQJSGlFKUaBVN6ANoFkdAktYOIZZSvXV9lChoBmgJaA9DCM3lBkOd6GVAlIaUUpRoFU3oA2gWR0CS1h/9YOlPdX2UKGgGaAloD0MIvTrHgGwmYkCUhpRSlGgVTegDaBZHQJLcZBqsU7F1fZQoaAZoCWgPQwjP2JdsvMVlQJSGlFKUaBVN6ANoFkdAkt7PJV81GnV9lChoBmgJaA9DCJxrmKFx2GJAlIaUUpRoFU3oA2gWR0CS31xnWattdX2UKGgGaAloD0MILSEf9GzoY0CUhpRSlGgVTegDaBZHQJLkBe5WilB1fZQoaAZoCWgPQwj3Peqv1wRgQJSGlFKUaBVN6ANoFkdAkuUPj81n/XV9lChoBmgJaA9DCJwYkpOJMF1AlIaUUpRoFU3oA2gWR0CS6nAPNFBqdX2UKGgGaAloD0MIWHVWC2wuZECUhpRSlGgVTegDaBZHQJLyYep4rz51fZQoaAZoCWgPQwjdlsgFZ3hdQJSGlFKUaBVN6ANoFkdAkvQED2alUXV9lChoBmgJaA9DCERMiSR69GBAlIaUUpRoFU3oA2gWR0CTA/HKOktVdX2UKGgGaAloD0MI5Zgs7r8KZECUhpRSlGgVTegDaBZHQJMEBYlpoK51fZQoaAZoCWgPQwh1WyIXHP9kQJSGlFKUaBVN6ANoFkdAkwbdDIBBA3V9lChoBmgJaA9DCDJWm/9X92ZAlIaUUpRoFU3oA2gWR0CTDeUHIIWydX2UKGgGaAloD0MI22/tRMk6Y0CUhpRSlGgVTegDaBZHQJMONHEuQIV1fZQoaAZoCWgPQwhRpWYPNEpjQJSGlFKUaBVN6ANoFkdAkxW7tJFspHV9lChoBmgJaA9DCH7GhQOhY2dAlIaUUpRoFU3oA2gWR0CTFyobn5i3dX2UKGgGaAloD0MIzJcXYJ/fY0CUhpRSlGgVTegDaBZHQJMXO/L1VYJ1fZQoaAZoCWgPQwgxC+2c5rxjQJSGlFKUaBVN6ANoFkdAkx05LqUu+XV9lChoBmgJaA9DCJ3y6EbYjmJAlIaUUpRoFU3oA2gWR0CTH4dWyTpxdX2UKGgGaAloD0MI3lUPmAeTYUCUhpRSlGgVTegDaBZHQJMgC7oSteV1fZQoaAZoCWgPQwg4h2u1h1E8QJSGlFKUaBVLxGgWR0CTIslLeyiVdX2UKGgGaAloD0MIwap6+R0UZUCUhpRSlGgVTegDaBZHQJMkP2VVxS51fZQoaAZoCWgPQwihFK3cC2BgQJSGlFKUaBVN6ANoFkdAkyUzujRD1HV9lChoBmgJaA9DCAtioGvfPWNAlIaUUpRoFU3oA2gWR0CTXpJQ+EAYdX2UKGgGaAloD0MIn+i68APeaECUhpRSlGgVTegDaBZHQJNmEC3gDRt1fZQoaAZoCWgPQwiPGD230J5iQJSGlFKUaBVN6ANoFkdAk2eZxrBTGnV9lChoBmgJaA9DCKmG/Z5YsU5AlIaUUpRoFUuyaBZHQJNxnN4Z/Ct1fZQoaAZoCWgPQwhNoIhFjC5kQJSGlFKUaBVN6ANoFkdAk3bYU8FINHV9lChoBmgJaA9DCLngDP7+1GRAlIaUUpRoFU3oA2gWR0CTduvnKW9ldX2UKGgGaAloD0MIOV/svXhxY0CUhpRSlGgVTegDaBZHQJN5nmbLEDR1fZQoaAZoCWgPQwh64jlbQAxlQJSGlFKUaBVN6ANoFkdAk3/VE7W/anV9lChoBmgJaA9DCLrYtFIIRGZAlIaUUpRoFU3oA2gWR0CTgCkk8ifQdX2UKGgGaAloD0MI/FHUmXuYSUCUhpRSlGgVS7FoFkdAk4F1og3cYnV9lChoBmgJaA9DCOhOsP86imRAlIaUUpRoFU3oA2gWR0CTh3717IDHdX2UKGgGaAloD0MI5nXEIRv8YUCUhpRSlGgVTegDaBZHQJOI3qzJIUd1fZQoaAZoCWgPQwgUI0vmWG5GQJSGlFKUaBVLxWgWR0CTjZ57PY4AdX2UKGgGaAloD0MIYmafxygVYkCUhpRSlGgVTegDaBZHQJOPbps41gp1fZQoaAZoCWgPQwh5H0dz5KdjQJSGlFKUaBVN6ANoFkdAk5HDS1E3KnV9lChoBmgJaA9DCIyd8BKc2mFAlIaUUpRoFU3oA2gWR0CTkkwiaAnVdX2UKGgGaAloD0MIZ2X7kLf5aECUhpRSlGgVTegDaBZHQJOVFtelbeN1fZQoaAZoCWgPQwifk943vsZiQJSGlFKUaBVN6ANoFkdAk5amMCLde3V9lChoBmgJaA9DCOF9VS5U1WVAlIaUUpRoFU3oA2gWR0CTl43wCr93dX2UKGgGaAloD0MIMBAEyNApZECUhpRSlGgVTegDaBZHQJOcL/S6UaB1fZQoaAZoCWgPQwh1sP7PYSJMQJSGlFKUaBVLtGgWR0CToXHRCx/vdX2UKGgGaAloD0MIaM2PvzQqZkCUhpRSlGgVTegDaBZHQJOk0TlDF611fZQoaAZoCWgPQwiwVYLFYVxhQJSGlFKUaBVN6ANoFkdAk64B1xKg7HV9lChoBmgJaA9DCPZ+ox03HWJAlIaUUpRoFU3oA2gWR0CTsoY+jdpJdX2UKGgGaAloD0MINe1imum9YECUhpRSlGgVTegDaBZHQJO1Dt9hJAd1fZQoaAZoCWgPQwhCIQIOIaZlQJSGlFKUaBVN6ANoFkdAk7tCu6mO2nV9lChoBmgJaA9DCF8mipA6/2RAlIaUUpRoFU3oA2gWR0CTu40jkdWAdX2UKGgGaAloD0MIpwcFpeiCZUCUhpRSlGgVTegDaBZHQJPC1liBoVV1fZQoaAZoCWgPQwhgzJasCrVkQJSGlFKUaBVN6ANoFkdAk8Qo7q6e5HV9lChoBmgJaA9DCNo6ONibaGJAlIaUUpRoFU3oA2gWR0CTyK1P3ztkdX2UKGgGaAloD0MINdJSebv6ZUCUhpRSlGgVTegDaBZHQJPKLLt/nW91fZQoaAZoCWgPQwihL739OYNmQJSGlFKUaBVN6ANoFkdAk8xNupCKJnV9lChoBmgJaA9DCHSV7q6zdmdAlIaUUpRoFU3oA2gWR0CTzMjXFtKqdX2UKGgGaAloD0MIUz9vKtITYECUhpRSlGgVTegDaBZHQJPPZmmLtNV1fZQoaAZoCWgPQwiQoWMHFZFiQJSGlFKUaBVN6ANoFkdAk9C5dSl3yXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 186,
79
+ "n_steps": 2024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 69,
86
+ "n_epochs": 6,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d6cba5e700866af2c63e03ad5b9d9810a600d38d395ee468ba1470b3d14bfba
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273c7c19bb795b21199ba333fff316817a9fc8d19b4879c66fe7d0aef8a7e1c6
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (246 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.9394863294468, "std_reward": 18.172161293890913, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T13:20:12.791128"}