Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "tr"
|
3 |
+
tags:
|
4 |
+
- sentiment
|
5 |
+
- twitter
|
6 |
+
- turkish
|
7 |
+
---
|
8 |
+
|
9 |
+
This Turkish Sentiment Analysis model is a fine-tuned checkpoint of pretrained [BERTurk model 128k uncased](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) with [BounTi dataset](https://ieeexplore.ieee.org/document/9477814).
|
10 |
+
## Usage in Hugging Face Pipeline
|
11 |
+
```
|
12 |
+
from transformers import pipeline
|
13 |
+
bounti = pipeline("sentiment-analysis",model="akoksal/bounti")
|
14 |
+
print(bounti("Bu yemeği pek sevmedim"))
|
15 |
+
>> [{'label': 'negative', 'score': 0.8012508153915405}]
|
16 |
+
```
|
17 |
+
|
18 |
+
## Results
|
19 |
+
The scores of the finetuned model with BERTurk:
|
20 |
+
|
21 |
+
||Accuracy|Precision|Recall|F1|
|
22 |
+
|-------------|:---------:|:---------:|:------:|:-----:|
|
23 |
+
|Validation|0.745|0.706|0.730|0.715|
|
24 |
+
|Test|0.723|0.692|0.729|0.701|
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
## Dataset
|
29 |
+
You can find the dataset in [our Github repo](https://github.com/boun-tabi/BounTi-Turkish-Sentiment-Analysis) with the training, validation, and test splits.
|
30 |
+
|
31 |
+
Due to Twitter copyright, we cannot release the full text of the tweets. We share the tweet IDs, and the full text can be downloaded through official Twitter API.
|
32 |
+
|
33 |
+
| | Training | Validation | Test |
|
34 |
+
|----------|:--------:|:----------:|:----:|
|
35 |
+
| Positive | 1691 | 188 | 469 |
|
36 |
+
| Neutral | 3034 | 338 | 843 |
|
37 |
+
| Negative | 1008 | 113 | 280 |
|
38 |
+
| Total | 5733 | 639 | 1592 |
|
39 |
+
|
40 |
+
## Citation
|
41 |
+
You can cite the following paper if you use our work:
|
42 |
+
```
|
43 |
+
@INPROCEEDINGS{BounTi,
|
44 |
+
author={Köksal, Abdullatif and Özgür, Arzucan},
|
45 |
+
booktitle={2021 29th Signal Processing and Communications Applications Conference (SIU)},
|
46 |
+
title={Twitter Dataset and Evaluation of Transformers for Turkish Sentiment Analysis},
|
47 |
+
year={2021},
|
48 |
+
volume={},
|
49 |
+
number={}
|
50 |
+
}
|
51 |
+
```
|
52 |
+
---
|