akhooli commited on
Commit
7115f1a
1 Parent(s): e25bdc1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -0
README.md CHANGED
@@ -39,7 +39,28 @@ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used
39
  This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model.
40
  A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
  This model is trained with few shots using the [akhooli/ar_hs](https://huggingface.co/datasets/akhooli/ar_hs) dataset. The dataset uses LLM to generate labels.
 
 
 
 
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  The rest of this card is auto generated.
44
  The model has been trained using an efficient few-shot learning technique that involves:
45
 
 
39
  This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model.
40
  A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
  This model is trained with few shots using the [akhooli/ar_hs](https://huggingface.co/datasets/akhooli/ar_hs) dataset. The dataset uses LLM to generate labels.
42
+ Usage:
43
+ ```python
44
+ pip install setfit
45
+ from setfit import SetFitModel
46
+ from unicodedata import normalize
47
 
48
+ # Download model from Hub
49
+ model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
50
+ # Run inference
51
+ queries = [
52
+ "سكت دهراً و نطق كفراً",
53
+ "الخلاف ﻻ يفسد للود قضية.",
54
+ "أنت شخص منبوذ. احترم أسيادك.",
55
+ "دع المكارم ﻻ ترحل لبغيتها واقعد فإنك أنت الطاعم الكاسي",
56
+ ]
57
+ queries_n = [normalize('NFKC', query) for query in queries]
58
+ preds = model.predict(queries_n)
59
+ print(preds)
60
+ # if you want to see the probabilities for each label
61
+ probas = model.predict_proba(queries_n)
62
+ print(probas)
63
+ ```
64
  The rest of this card is auto generated.
65
  The model has been trained using an efficient few-shot learning technique that involves:
66