File size: 68,948 Bytes
ca67c09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 |
import torch
import torch.nn as nn
from typing import Dict
from transformers import LlamaForCausalLM, LlamaConfig
from transformers.generation.utils import GenerationConfig
import os
import pdb
import copy
import math
import numpy as np
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import gc
import traceback
import torch
from torch import nn
import torch.utils.checkpoint
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, LlamaAttention, apply_rotary_pos_emb
from transformers.cache_utils import DynamicCache
class PredictorDynamicCache(DynamicCache):
def __init__(self):
super().__init__()
self.predictor_primary_key: List[Optional[torch.Tensor]] = []
self.predictor_primary_value: List[Optional[torch.Tensor]] = []
self.predictor_importance_key: List[Optional[torch.Tensor]] = []
def update_predictor_primary(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Append or create the predictor's "primary" K/V states for `layer_idx`.
shape for key_states, value_states is typically [batch_size, num_heads, seq_len, head_dim].
"""
# Extend the lists so that `predictor_primary_key[layer_idx]` and
# `predictor_primary_value[layer_idx]` exist.
self._ensure_list_capacity(
self.predictor_primary_key, layer_idx, fill=None
)
self._ensure_list_capacity(
self.predictor_primary_value, layer_idx, fill=None
)
# If this is the very first time we are updating that layer's predictor cache, just assign
if self.predictor_primary_key[layer_idx] is None:
self.predictor_primary_key[layer_idx] = key_states
self.predictor_primary_value[layer_idx] = value_states
else:
# Otherwise, concatenate along the seq_len dimension (=-2 or =2 depending on your shape).
self.predictor_primary_key[layer_idx] = torch.cat(
[self.predictor_primary_key[layer_idx], key_states], dim=2
)
self.predictor_primary_value[layer_idx] = torch.cat(
[self.predictor_primary_value[layer_idx], value_states], dim=2
)
return (
self.predictor_primary_key[layer_idx],
self.predictor_primary_value[layer_idx],
)
def update_predictor_importance(
self,
key_states: torch.Tensor,
layer_idx: int,
) -> torch.Tensor:
"""
Append or create the predictor's "importance" key for `layer_idx`.
"""
self._ensure_list_capacity(
self.predictor_importance_key, layer_idx, fill=None
)
if self.predictor_importance_key[layer_idx] is None:
self.predictor_importance_key[layer_idx] = key_states
else:
self.predictor_importance_key[layer_idx] = torch.cat(
[self.predictor_importance_key[layer_idx], key_states], dim=2
)
return self.predictor_importance_key[layer_idx]
def crop(self, max_length: int):
super().crop(max_length)
# Now also crop predictor caches
for idx in range(len(self.predictor_primary_key)):
if self.predictor_primary_key[idx] is not None:
self.predictor_primary_key[idx] = self.predictor_primary_key[idx][..., :max_length, :]
self.predictor_primary_value[idx] = self.predictor_primary_value[idx][..., :max_length, :]
for idx in range(len(self.predictor_importance_key)):
if self.predictor_importance_key[idx] is not None:
self.predictor_importance_key[idx] = self.predictor_importance_key[idx][..., :max_length, :]
# Remember to adjust self._seen_tokens accordingly
self._seen_tokens = min(self._seen_tokens, max_length)
def batch_split(
self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
) -> List["PredictorDynamicCache"]:
# Use the base split logic for the standard K/V
base_splits = super().batch_split(full_batch_size, split_size, num_hidden_layers)
# `base_splits` is now a list of new DynamicCache objects. But we *actually*
# want them to be PredictorDynamicCache so we can store the predictor states.
# Easiest: we can cast and fill them.
out: List[PredictorDynamicCache] = []
for split_i, base_split in enumerate(base_splits):
# Construct an empty PredictorDynamicCache
new_cache = PredictorDynamicCache()
# Copy over the underlying fields from base_split
new_cache.key_cache = base_split.key_cache
new_cache.value_cache = base_split.value_cache
new_cache._seen_tokens = base_split._seen_tokens
# Now also slice our predictor fields
# The slice in batch dim is [i:i+split_size].
b_start = split_i * split_size
b_end = min(full_batch_size, b_start + split_size)
new_cache.predictor_primary_key = self._slice_list_tensors(
self.predictor_primary_key, b_start, b_end
)
new_cache.predictor_primary_value = self._slice_list_tensors(
self.predictor_primary_value, b_start, b_end
)
new_cache.predictor_importance_key = self._slice_list_tensors(
self.predictor_importance_key, b_start, b_end
)
out.append(new_cache)
return out
@classmethod
def from_batch_splits(cls, splits: List["PredictorDynamicCache"], num_hidden_layers: int = None) -> "PredictorDynamicCache":
# Let the base class handle the normal K/V merges
base_merged = DynamicCache.from_batch_splits(splits, num_hidden_layers=num_hidden_layers)
merged = cls()
merged.key_cache = base_merged.key_cache
merged.value_cache = base_merged.value_cache
merged._seen_tokens = base_merged._seen_tokens
# Now unify predictor states by concatenating along batch dim=0
merged.predictor_primary_key = cls._merge_list_tensors(
[split.predictor_primary_key for split in splits]
)
merged.predictor_primary_value = cls._merge_list_tensors(
[split.predictor_primary_value for split in splits]
)
merged.predictor_importance_key = cls._merge_list_tensors(
[split.predictor_importance_key for split in splits]
)
return merged
def batch_repeat_interleave(self, repeats: int):
super().batch_repeat_interleave(repeats)
self.predictor_primary_key = self._repeat_list_tensors(
self.predictor_primary_key, repeats
)
self.predictor_primary_value = self._repeat_list_tensors(
self.predictor_primary_value, repeats
)
self.predictor_importance_key = self._repeat_list_tensors(
self.predictor_importance_key, repeats
)
def batch_select_indices(self, indices: torch.Tensor):
super().batch_select_indices(indices)
self.predictor_primary_key = self._select_list_tensors(
self.predictor_primary_key, indices
)
self.predictor_primary_value = self._select_list_tensors(
self.predictor_primary_value, indices
)
self.predictor_importance_key = self._select_list_tensors(
self.predictor_importance_key, indices
)
@staticmethod
def _ensure_list_capacity(lst: list, idx: int, fill=None):
if len(lst) <= idx:
lst.extend([fill] * (idx + 1 - len(lst)))
@staticmethod
def _slice_list_tensors(
tensor_list: List[Optional[torch.Tensor]], start: int, end: int
) -> List[Optional[torch.Tensor]]:
out = []
for t in tensor_list:
if t is None:
out.append(None)
else:
out.append(t[start:end, ...])
return out
@classmethod
def _merge_list_tensors(
cls, list_of_lists: List[List[Optional[torch.Tensor]]]
) -> List[Optional[torch.Tensor]]:
# If no splits, return empty
if not list_of_lists:
return []
# Number of layers is length of the sub-list from the first split
max_len = len(list_of_lists[0])
merged = [None] * max_len
for layer_idx in range(max_len):
# collect that layer_idx from each split
chunk_tensors = []
for split in list_of_lists:
t = split[layer_idx] if layer_idx < len(split) else None
if t is not None:
chunk_tensors.append(t)
if len(chunk_tensors) == 0:
merged[layer_idx] = None
else:
merged[layer_idx] = torch.cat(chunk_tensors, dim=0)
return merged
@staticmethod
def _repeat_list_tensors(
tensor_list: List[Optional[torch.Tensor]], repeats: int
) -> List[Optional[torch.Tensor]]:
out = []
for t in tensor_list:
if t is None:
out.append(None)
else:
out.append(t.repeat_interleave(repeats, dim=0))
return out
@staticmethod
def _select_list_tensors(
tensor_list: List[Optional[torch.Tensor]], indices: torch.Tensor
) -> List[Optional[torch.Tensor]]:
out = []
for t in tensor_list:
if t is None:
out.append(None)
else:
out.append(t.index_select(0, indices))
return out
class TokenImportancePredictorAttentive(nn.Module):
def __init__(self, config, pred_hid_size, num_heads, num_hidden_layers, dDash, intdim, \
attn_reduce_factor, dropout=0.1):
"""
Optimized Token Importance Predictor with parallel Q-K projections and simplified mapping.
Args:
config: Configuration object containing model parameters.
pred_hid_size (int): Hidden size for the predictor's attention layer.
num_heads (int): Number of attention heads.
num_hidden_layers (int): Number of transformer layers to predict.
dropout (float): Dropout probability.
q_downscale (int): Factor to downscale the Q dimension for efficiency.
intermediate_dim (int): Intermediate dimension for non-linear transformations in projections.
"""
super().__init__()
self.config = config
self.hidden_size = pred_hid_size
self.num_heads = num_heads
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.head_dim = pred_hid_size // (num_heads * 4) # Predictor head dimension is not the same as the model head dimension.
self.rope_theta = config.rope_theta
self.dDash = dDash
self.intermediate_dim = intdim
self.attn_reduce_factor = attn_reduce_factor
self.max_position_embeddings = config.max_position_embeddings
self.flash_attn = False
assert pred_hid_size % (num_heads * 4) == 0, "pred_hid_size must be divisible by num_heads * 4."
# Reduce the hidden size for attention computations
self.hidden_size_reduced = self.hidden_size // self.attn_reduce_factor # For example, reduce to 1/4th
assert self.hidden_size_reduced % self.num_heads == 0, "Reduced hidden size must be divisible by num_heads"
self.attn_head_dim = self.hidden_size_reduced // self.num_heads
# Input projection to reduce hidden size
self.input_proj = nn.Linear(self.hidden_size, self.hidden_size_reduced, bias=False)
# Query, Key, Value projections for attention
self.q_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.k_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.v_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
# Output projection to restore hidden size
# self.o_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.attn_dropout = nn.Dropout(self.dropout)
# LayerNorm and Feed-forward network
self.norm1 = nn.LayerNorm(self.hidden_size_reduced)
self.norm2 = nn.LayerNorm(self.hidden_size)
self.ffn_hidden_size = 2 * self.hidden_size_reduced # Typical FFN hidden size
self.ffn = nn.Sequential(
nn.Linear(self.hidden_size_reduced, self.ffn_hidden_size),
nn.GELU(),
nn.Linear(self.ffn_hidden_size, self.hidden_size),
nn.Dropout(self.dropout)
)
# Add extra LayerNorm for the importance branch when not using the old design.
self.norm_importance = nn.LayerNorm(self.hidden_size)
# Define Q and K projection layers for all layers in parallel with non-linearity[]
# Output shape: [B, L, N * H * D']
self.q_proj_importance = nn.Sequential(
nn.Linear(pred_hid_size, self.intermediate_dim, bias=False),
nn.SiLU(),
nn.Linear(self.intermediate_dim, num_hidden_layers * num_heads * self.dDash, bias=False)
)
self.k_proj_importance = nn.Sequential(
nn.Linear(pred_hid_size, self.intermediate_dim, bias=False),
nn.SiLU(),
nn.Linear(self.intermediate_dim, num_hidden_layers * num_heads * self.dDash, bias=False)
)
# Initialize rotary positional embeddings
self._init_rope()
self._initialize_weights()
self.device = None
def _initialize_weights(self):
for name, module in self.named_modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight) # Xavier initialization for linear layers
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.MultiheadAttention):
# Initialize in_proj_weight
nn.init.xavier_uniform_(module.in_proj_weight)
if module.in_proj_bias is not None:
nn.init.constant_(module.in_proj_bias, 0)
# Initialize out_proj
nn.init.xavier_uniform_(module.out_proj.weight)
if module.out_proj.bias is not None:
nn.init.constant_(module.out_proj.bias, 0)
def _init_rope(self):
# send self.config but after modifying head_dim to be self.head_dim just in the function call
config_copy = copy.deepcopy(self.config)
config_copy.rope_scaling = {
"factor": 32.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
}
config_copy.head_dim = self.attn_head_dim
# Rotary embedding for attention layer
self.rotary_emb_attn = LlamaRotaryEmbedding(
config_copy
)
config_copy.head_dim = self.dDash
# Rotary embedding for importance projection
self.rotary_emb_importance = LlamaRotaryEmbedding(
config_copy
)
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, use_cache=False, layer_idx=None):
"""
Forward pass for the Optimized Token Importance Predictor.
Args:
hidden_states (torch.Tensor): Input tensor of shape [B, L, HQ].
attention_mask (torch.Tensor, optional): Attention mask of shape [B, 1, 1, L] or [B, 1, L, L].
position_ids (torch.Tensor, optional): Position IDs.
past_key_value (tuple, optional): Past key and value states.
use_cache (bool, optional): Whether to use cache.
Returns:
torch.Tensor: Importance scores of shape [B, N, H, L, L].
"""
layer_idx = 0 # Guaranteed to be 0, as we only have one predictor!
# Set device if not already set
if self.device != hidden_states.device:
self.device = hidden_states.device
self.to(self.device)
B, L, E = hidden_states.size()
# Reduce hidden size
hidden_states = hidden_states.to(self.input_proj.weight.dtype)
hidden_states_reduced = self.input_proj(hidden_states) # [B, L, hidden_size_reduced]
# Compute q, k, v for attention
q = self.q_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
k = self.k_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
v = self.v_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
# Reshape q, k, v to [B, num_heads, L, attn_head_dim]
q = q.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
k = k.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
v = v.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
if (past_key_value is not None
and layer_idx < len(past_key_value.predictor_primary_key)
and past_key_value.predictor_primary_key[layer_idx] is not None):
offset = past_key_value.predictor_primary_key[layer_idx].shape[2] # old_k.shape[2]
else:
offset = 0
# total seq length for new + old
kv_seq_len = offset + L
# Step 2: build position_ids for just the new chunk [offset..offset+L-1]
if position_ids is None:
# shape [B, L], e.g. [0..(offset+L-1)]
position_ids = torch.arange(offset, offset + L, dtype=torch.long, device=self.device)
position_ids = position_ids.unsqueeze(0).expand(B, L)
# Step 3: apply rotary to just the new chunk k,v with the correct offset
cos, sin = self.rotary_emb_attn(v, position_ids)
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
# Step 4: ask the cache to append them. Then re‐assign k, v to the full cat
if use_cache and past_key_value is not None:
k, v = past_key_value.update_predictor_primary(k.detach(), v.detach(), layer_idx)
kv_seq_len = k.size(2) # now includes old + new
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
attn_output = attn_output.to(q.dtype)
attn_output = attn_output.transpose(1, 2).contiguous().view(B, L, self.hidden_size_reduced)
attn_output = self.norm1(attn_output)
ffn_output = self.ffn(attn_output)
# Temporary measure, till old predictor fully deprecated
hidden_states = self.norm2(hidden_states + ffn_output)
B, L, E = hidden_states.size()
# Importance projections
H = self.num_heads
N = self.num_hidden_layers
hidden_states_for_importance = self.norm_importance(hidden_states)
q_importance = self.q_proj_importance(hidden_states_for_importance)
k_importance = self.k_proj_importance(hidden_states_for_importance)
# Reshape and permute to [B, N, H, L, D']
q_importance = q_importance.view(B, L, N, H, self.dDash).permute(0, 2, 3, 1, 4).contiguous() # [B, N, H, L, D']
k_importance = k_importance.view(B, L, N, H, self.dDash).permute(0, 2, 3, 1, 4).contiguous() # [B, N, H, L, D']
# Flatten N and H for efficient computation
q_importance = q_importance.view(B * N * H, L, self.dDash) # [BNH, L, D']
k_importance = k_importance.view(B * N * H, L, self.dDash) # [BNH, L, D']
# Apply rotary positional embeddings
cos, sin = self.rotary_emb_importance(k_importance, position_ids)
q_importance, k_importance = apply_rotary_pos_emb(q_importance, k_importance, cos, sin, position_ids)
if use_cache and past_key_value is not None:
k_importance = past_key_value.update_predictor_importance(k_importance.detach(), layer_idx)
k_importance = k_importance.view(B * H, N, -1, self.dDash) # [BNH, L, D']
q_importance = q_importance.view(B * H, N, -1, self.dDash) # [BH, N, L, D']
return q_importance, k_importance
class HeadImportancePredictor(nn.Module):
def __init__(self, config, pred_hid_size, num_heads, num_hidden_layers, dDash, intdim, \
attn_reduce_factor, dropout=0.1):
"""
Optimized Token Importance Predictor with parallel Q-K projections and simplified mapping.
Args:
config: Configuration object containing model parameters.
pred_hid_size (int): Hidden size for the predictor's attention layer.
num_heads (int): Number of attention heads.
num_hidden_layers (int): Number of transformer layers to predict.
dropout (float): Dropout probability.
q_downscale (int): Factor to downscale the Q dimension for efficiency.
intermediate_dim (int): Intermediate dimension for non-linear transformations in projections.
"""
super().__init__()
self.is_head_predictor = None
self.config = config
self.hidden_size = pred_hid_size
self.num_heads = num_heads
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.head_dim = pred_hid_size // (num_heads * 4)
self.rope_theta = config.rope_theta
self.dDash = dDash
self.intermediate_dim = intdim
self.attn_reduce_factor = attn_reduce_factor
self.max_position_embeddings = config.max_position_embeddings
self.flash_attn = False
# Reduce the hidden size for attention computations
self.hidden_size_reduced = self.hidden_size // self.attn_reduce_factor # For example, reduce to 1/4th
assert self.hidden_size_reduced % self.num_heads == 0, "Reduced hidden size must be divisible by num_heads"
self.attn_head_dim = self.hidden_size_reduced // self.num_heads
# Input projection to reduce hidden size
self.input_proj = nn.Linear(self.hidden_size, self.hidden_size_reduced, bias=False)
# Query, Key, Value projections for attention
self.q_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.k_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.v_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
# Output projection to restore hidden size
# self.o_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.attn_dropout = nn.Dropout(self.dropout)
# LayerNorm and Feed-forward network
self.norm1 = nn.LayerNorm(self.hidden_size_reduced)
self.norm2 = nn.LayerNorm(self.hidden_size)
self.ffn_hidden_size = 4 * self.hidden_size_reduced # Typical FFN hidden size
self.ffn = nn.Sequential(
nn.Linear(self.hidden_size_reduced, self.ffn_hidden_size),
nn.GELU(),
nn.Linear(self.ffn_hidden_size, self.num_heads * self.num_hidden_layers),
)
# Initialize rotary positional embeddings
self._init_rope()
self._initialize_weights()
self.device = None
def _initialize_weights(self):
for name, module in self.named_modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight) # Xavier initialization for linear layers
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.MultiheadAttention):
# Initialize in_proj_weight
nn.init.xavier_uniform_(module.in_proj_weight)
if module.in_proj_bias is not None:
nn.init.constant_(module.in_proj_bias, 0)
# Initialize out_proj
nn.init.xavier_uniform_(module.out_proj.weight)
if module.out_proj.bias is not None:
nn.init.constant_(module.out_proj.bias, 0)
def _init_rope(self):
config_copy = copy.deepcopy(self.config)
config_copy.head_dim = self.attn_head_dim
# Rotary embedding for attention layer
self.rotary_emb_attn = LlamaRotaryEmbedding(
config_copy
)
# Rotary embedding for importance projection
self.rotary_emb_importance = LlamaRotaryEmbedding(
config_copy
)
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, use_cache=False):
"""
Forward pass for the Optimized Token Importance Predictor.
Args:
hidden_states (torch.Tensor): Input tensor of shape [B, L, HQ].
attention_mask (torch.Tensor, optional): Attention mask of shape [B, 1, 1, L] or [B, 1, L, L].
position_ids (torch.Tensor, optional): Position IDs.
past_key_value (tuple, optional): Past key and value states.
use_cache (bool, optional): Whether to use cache.
Returns:
torch.Tensor: Importance scores of shape [B, N, H, L, L].
"""
# Set device if not already set
if self.device != hidden_states.device:
self.device = hidden_states.device
self.to(self.device)
B, L, E = hidden_states.size()
if past_key_value is None:
past_key_value = {}
# if L == 1:
# import pdb; pdb.set_trace()
past_primary = past_key_value.get('primary', None)
# Reduce hidden size
hidden_states = hidden_states.to(self.input_proj.weight.dtype)
hidden_states_reduced = self.input_proj(hidden_states) # [B, L, hidden_size_reduced]
# Compute q, k, v for attention
q = self.q_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
k = self.k_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
v = self.v_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
# Reshape q, k, v to [B, num_heads, L, attn_head_dim]
q = q.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
k = k.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
v = v.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
# Compute kv_seq_len before concatenation
if past_primary is not None:
past_L = past_primary[0].shape[2]
kv_seq_len = past_L + L
else:
kv_seq_len = L
# Apply rotary positional embeddings based on kv_seq_len
cos, sin = self.rotary_emb_attn(v, position_ids)
if position_ids is None:
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=self.device)
position_ids = position_ids.unsqueeze(0).expand(B, kv_seq_len)
if past_primary is not None:
# Concatenate past k and v
k = torch.cat([past_primary[0], k], dim=2) # [B, num_heads, past_L + L, attn_head_dim]
v = torch.cat([past_primary[1], v], dim=2) # [B, num_heads, past_L + L, attn_head_dim]
# Apply rotary embeddings after concatenation
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
# Update cache if use_cache is True
if use_cache:
past_key_value['primary'] = (k.detach(), v.detach())
# if self.flash_attn:
# sm_scale = 1.0 / math.sqrt(self.attn_head_dim)
# attn_output = attention(q.contiguous().to(torch.float16), k.contiguous().to(torch.float16), v.contiguous().to(torch.float16), True, sm_scale).to(q.dtype)
# else:
# attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
attn_output = attn_output.to(q.dtype)
attn_output = attn_output.transpose(1, 2).contiguous().view(B, L, self.hidden_size_reduced)
attn_output = self.norm1(attn_output)
head_importances = self.ffn(attn_output)
return head_importances, past_key_value
def calculate_hit_metrics(estimated_importance: torch.Tensor,
true_importance: torch.Tensor,
top_k_ratio: float = 0.5) -> Tuple[float, float, float]:
"""
Calculate hit accuracy, mean, and max rank correlation between estimated and true importance tensors.
We compute metrics along the last dimension of the input tensors.
Shapes:
- 4D token-importance: [B, H, L, L]. We slice the last query (index -1) => [B, H, L].
- 3D head-importance: [B, L, H]. We use all of it as-is => [B, L, H].
Args:
estimated_importance (torch.Tensor): [B, H, L, L] or [B, L, H]
true_importance (torch.Tensor): [B, H, L, L] or [B, L, H]
top_k_ratio (float): Fraction of top-k elements to consider for hit accuracy (default=0.5).
Returns:
(hit_accuracy, mean_corr, max_corr):
hit_accuracy (float): Intersection ratio of top-k sets (0..1).
mean_corr (float): Average Spearman rank correlation over all [B, ...].
max_corr (float): Maximum Spearman rank correlation among all [B, ...].
"""
# 1) Standardize shapes so the last dimension is what we rank over.
if estimated_importance.dim() == 4:
# Shape is [B, H, L, L] => slice to keep only the last query => [B, H, L]
estimated_importance = estimated_importance[:, :, -1, :]
true_importance = true_importance[:, :, -1, :]
# after slicing: [B, H, L]
# For intersection denominator => top_k * B * H
denom_for_hits = estimated_importance.size(0) * estimated_importance.size(1)
elif estimated_importance.dim() == 3:
# Shape is [B, L, H], the last dimension is H
# For intersection denominator => top_k * B * L
denom_for_hits = estimated_importance.size(0) * estimated_importance.size(1)
else:
raise ValueError("Tensors must be either 4D [B,H,L,L] or 3D [B,L,H].")
# 2) Compute Spearman rank correlation along the last dimension.
# Sort indices in descending order => get 'ranks' for correlation.
_, sorted_esti = torch.sort(estimated_importance, dim=-1, descending=True)
_, sorted_true = torch.sort(true_importance, dim=-1, descending=True)
# Spearman's rho = 1 - 6 * sum(d^2) / [n*(n^2 - 1)]
n = sorted_esti.shape[-1]
d = sorted_esti.float() - sorted_true.float()
d_squared = d ** 2
sum_d_squared = d_squared.sum(dim=-1)
rank_corr = 1 - (6 * sum_d_squared) / (n * (n**2 - 1)) # shape: [B,H] or [B,L]
mean_corr = rank_corr.mean().item()
max_corr = rank_corr.max().item()
# 3) Compute top-k hit accuracy along the last dimension.
top_k = max(1, int(n * top_k_ratio))
_, top_esti_indices = torch.topk(estimated_importance, top_k, dim=-1)
_, top_true_indices = torch.topk(true_importance, top_k, dim=-1)
# top_esti_indices => [B,H,top_k] or [B,L,top_k]
# top_true_indices => [B,H,top_k] or [B,L,top_k]
# matches => [B,H,top_k,top_k] or [B,L,top_k,top_k]
matches = (top_esti_indices.unsqueeze(-1) == top_true_indices.unsqueeze(-2))
intersection = matches.any(dim=-1).sum(dim=-1) # => [B,H] or [B,L]
# Each [B,H] or [B,L] element can have at most 'top_k' matches, so total is top_k * denom_for_hits.
total_possible = top_k * denom_for_hits
hit_accuracy = intersection.sum().item() / total_possible # => 0..1
return hit_accuracy, mean_corr, max_corr
def threshold_to_mask(unadj_importance_mask, perhead_thresholds, min_sparse_index, bsz, q_len, key_len):
"""
Create a mask tensor based on per-head thresholds, setting values below the threshold to -inf.
Args:
- unadj_importance_mask: torch.Tensor of shape [B, H, Lq, Lk].
- perhead_thresholds: torch.Tensor of shape [H], per-head thresholds.
- min_sparse_index: Minimum index for sparsity; values below this index will not be masked.
- bsz: Batch size.
- q_len: Query length (Lq).
- key_len: Key length (Lk).
Returns:
- mask_tensor: torch.Tensor of shape [B, H, Lq, Lk], with values below threshold as -inf.
"""
# Ensure perhead_thresholds is in the correct shape for broadcasting
thresholds_broadcast = perhead_thresholds.view(1, -1, 1, 1) # [1, H, 1, 1]
# Compare unadj_importance_mask with thresholds to create a mask
mask_tensor = torch.where(
unadj_importance_mask >= thresholds_broadcast,
torch.zeros_like(unadj_importance_mask),
torch.full_like(unadj_importance_mask, float('-inf'))
) # [B, H, Lq, Lk]
# Ensure mask_tensor has mask_tensor[:, :, :, :min_sparse_index] = 0
mask_tensor[:, :, :, :min_sparse_index] = 0.0
return mask_tensor
class SlidingWindowCache:
def __init__(self, max_seq_len, sliding_window, device):
self.sliding_window = sliding_window
self.device = device
if sliding_window is None:
self.max_seq_len = 0
self.window = None
else:
self.max_seq_len = max_seq_len
self.window = self._create_window(self.max_seq_len)
def _create_window(self, seq_len):
idx = torch.arange(seq_len, device=self.device)
query = idx.unsqueeze(1) # [seq_len, 1]
key = idx.unsqueeze(0) # [1, seq_len]
win = (key >= (query - self.sliding_window + 1)) & (key <= query)
return win.unsqueeze(0).unsqueeze(0) # [1,1,seq_len,seq_len]
def get_window(self, q_len, key_len):
if self.sliding_window is None:
return None
req = max(q_len, key_len)
if req > self.max_seq_len:
self.max_seq_len = req
self.window = self._create_window(self.max_seq_len)
return self.window[:, :, :q_len, :key_len]
def enforce_sliding_window(mask_tensor, window):
if window is None:
return mask_tensor
return mask_tensor.masked_fill(window, 0.0)
def sorted_index_to_mask(
sorted_indices,
attention_mask,
min_sparse_index,
bsz,
q_len,
key_len,
sparse_aggression,
sliding_window=None
):
"""
sorted_indices: [B, H, q_len, key_len]
attention_mask: [1, 1, q_len, key_len] (True = keep, False = mask out, or vice versa)
min_sparse_index: guaranteed front region to keep
sliding_window: guaranteed trailing region (for each query) to keep
sparse_aggression: float in [0,1], fraction of keys to drop or keep
"""
device = sorted_indices.device
dtype = sorted_indices.dtype
# Step 1: Compute base K
if q_len == 1:
query_positions = torch.arange(q_len, device=device).view(1, 1, q_len, 1).float()
query_positions[0] = key_len + 1
else:
query_positions = torch.arange(q_len, device=device).view(1, 1, q_len, 1).float() + 1.0
K_original = torch.ceil(query_positions * sparse_aggression).long() # [1,1,q_len,1]
K_original = torch.clamp(K_original, max=key_len)
# Step 1b: Incorporate guaranteed region
guaranteed = min_sparse_index
if sliding_window is not None:
guaranteed += sliding_window
# Subtract guaranteed from the original K
K_adjusted = K_original - guaranteed
# Ensure K_adjusted is at least 0
K_adjusted = torch.clamp(K_adjusted, min=0, max=key_len)
# Step 2: Expand attention_mask to [B,H,q_len,key_len]
attention_mask_expanded = attention_mask.expand(bsz, -1, -1, -1)
attention_mask_expanded = attention_mask_expanded.expand(-1, sorted_indices.size(1), -1, -1)
# Convert True -> 1, False -> 0
attention_mask_expanded = (~attention_mask_expanded.bool()).int()
# Step 3: Gather (reorder) mask by sorted_indices
gathered_mask = torch.gather(attention_mask_expanded, dim=-1, index=sorted_indices)
# Step 4: cumsum along sorted dimension
gathered_mask_float = gathered_mask.float()
cum_sum = torch.cumsum(gathered_mask_float, dim=-1) # [B,H,q_len,key_len]
# Step 5: Compare cumsum <= K_adjusted
# Expand K_adjusted to [B,H,q_len,key_len] for broadcast
K_broadcast = K_adjusted.view(1, 1, q_len, 1).expand_as(cum_sum)
selected_mask = (cum_sum <= K_broadcast)
# Step 6: Prepare final mask_tensor with -inf by default
mask_tensor = torch.full_like(attention_mask_expanded.float(), float('-inf'))
# Step 7: Scatter 0 where selected, -inf otherwise
scatter_values = torch.zeros_like(gathered_mask_float)
scatter_values = scatter_values.masked_fill(~selected_mask, float('-inf'))
mask_tensor.scatter_(-1, sorted_indices, scatter_values)
# Step 8: Force the guaranteed front region unmasked
mask_tensor[:, :, :, :min_sparse_index] = 0.0
# We do NOT forcibly unmask the trailing `sliding_window` here,
# because we typically do it with a separate function that
# ensures the last `sliding_window` positions are unmasked for each query.
# Replace with self.sliding_window where referenced
# Where not referenced, reduce budget in calculation.
return mask_tensor
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, config=None):
self.scaling_factor = scaling_factor
super().__init__(config)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, config=None):
self.scaling_factor = scaling_factor
super().__init__(config)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class LlamaAttentionExperimental(nn.Module):
def __init__(self, config: LlamaConfig, producer=None, layer_idx=0):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_hidden_layers = config.num_hidden_layers
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.inference_mode = False
self.producer = producer
self.layer_idx = layer_idx
self.token_sparse_method = None
self.sparse_aggression = None
self.stream_llm_start_size = None
self.dDash = None
self.intdim = None
self.attn_reduce_factor = None
self.head_attn_reduce_factor = None
self.effective_sparsity = None
self.min_sparse_index = None
self.pred_hid_size = self.hidden_size
self.num_tok_per_page = None
self.calc_hitrates = False
self.flash_attn = False
self.train_headpredictor = False
self.calibrate_thresholds = False
self.test_with_thresholds = False
self.old_predictor = None
if self.layer_idx > 0:
self.mseloss = MSELoss(reduction='none')
self.msemagn_loss = None
self.headmseloss = MSELoss(reduction='none')
self.headmsemagn_loss = None
if self.producer is None: # This is the producer layer
self.q_importance = None # Shared mask across layers during inference
self.k_importance = None
self.head_importances = None
self.actmagn_masklist = {}
self.available_tokens = {}
# Attention setup
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self._init_rope()
def update_predictor(self):
self.sparse_token_predictor = TokenImportancePredictorAttentive(
self.config, self.pred_hid_size, self.num_heads, self.num_layers_pred, dropout=0.1, dDash = self.dDash, \
intdim = self.intdim, attn_reduce_factor=self.attn_reduce_factor
).to('cuda:0')
self.sparse_token_predictor.flash_attn = self.flash_attn
if self.train_headpredictor:
self.sparse_head_predictor = HeadImportancePredictor(
self.config, self.pred_hid_size, self.num_heads, self.num_layers_pred, dropout=0.1, dDash = self.dDash, \
intdim = self.intdim, attn_reduce_factor=self.head_attn_reduce_factor
).to('cuda:0')
self.sparse_head_predictor.flash_attn = self.flash_attn
def set_token_sparsity(self):
assert self.token_sparse_method is not None, "Set token sparse method first!"
if self.token_sparse_method is not None:
try:
mname = self.config._name_or_path.split("/")[-1]
read_path = f"threshold_calibs/{mname}/{self.token_sparse_method}.pkl"
threshold_model_dictionary = torch.load(read_path)
self.tok_calibration_set = threshold_model_dictionary
except:
pass
if self.token_sparse_method == "LazyLLM":
if self.layer_idx <= 9:
self.sparse_aggression = 1
elif self.layer_idx <= 19:
self.sparse_aggression = 0.7
elif self.layer_idx <= 28:
self.sparse_aggression = 0.4
else:
self.sparse_aggression = 0.1
elif "fixed" in self.token_sparse_method:
if self.layer_idx == 0:
self.sparse_aggression = 1
else:
self.sparse_aggression = 1 - float(self.token_sparse_method.split("_")[1].split("pc")[0])/100.
elif "progressive" in self.token_sparse_method:
pc_drop = float(self.token_sparse_method.split("_")[1].split("pc")[0])/100.
self.sparse_aggression = (1 - pc_drop) ** (self.layer_idx) # (x% per layer, progressive_xpc style)
else:
raise ValueError(f"Unknown token sparsity method {self.token_sparse_method}")
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.config
)
else:
scaling_type = self.config.rope_scaling.get("type") or self.config.rope_scaling.get("rope_type")
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear" or scaling_type == 'llama3':
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
config=self.config
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
config=self.config
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Union[DynamicCache, PredictorDynamicCache]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PredictorDynamicCache]]:
bsz, q_len, _ = hidden_states.size()
Ltrack = hidden_states.size(1)
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
evalmode = self.eval_llm_mode
num_tokens_to_keep = int(q_len * self.sparse_aggression)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # AHMED: Modified this to use the newer version.
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if use_cache:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
kv_seq_len = key_states.shape[-2]
final_mask = None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_len = key_states.size(2)
bsz, q_len = query_states.size(0), query_states.size(2)
if attention_mask is None:
# We want a [q_len, kv_seq_len] boolean upper-triangular mask
causal_mask_2d = torch.ones(q_len, kv_seq_len,
device=hidden_states.device,
dtype=torch.bool).triu(diagonal=1)
# Then shape it to [bsz, 1, q_len, kv_seq_len]
causal_mask_4d = causal_mask_2d.unsqueeze(0).expand(bsz, 1, q_len, kv_seq_len)
# Now fill -inf where the mask is True
attention_mask = torch.full_like(causal_mask_4d, 0, dtype=hidden_states.dtype)
if q_len != 1:
attention_mask = attention_mask.masked_fill(causal_mask_4d, float("-inf"))
if self.inference_mode:
min_sparse_index = self.min_sparse_index
with torch.no_grad():
if evalmode == "ExpPred":
if self.layer_idx > 0:
q_importance_tensor = self.producer.q_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(query_states.device) # [BH, Lq, D']
k_importance_tensor = self.producer.k_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(key_states.device) # [BH, Lk, D']
importance_mask = torch.bmm(q_importance_tensor, k_importance_tensor.transpose(-2, -1)) / math.sqrt(self.dDash) # [BH, Lq, Lk]
importance_mask = importance_mask.view(bsz, self.num_heads, q_len, key_len) # [B, H, Lq, Lk]
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
if self.calc_hitrates:
self.tok_hit_acc, self.tok_mean_rank_corr, self.tok_max_rank_corr = calculate_hit_metrics(
estimated_importance=importance_mask,
true_importance=attn_weights,
top_k_ratio=0.5
)
if self.calibrate_thresholds:
### Threshold variance investigation
unadj_importance_mask = importance_mask.clone()
importance_mask = torch.softmax(importance_mask + attention_mask, dim=-1)
sorted_indices = torch.argsort(importance_mask, dim=-1, descending=True)
sorted_indices = sorted_indices[:, :, -q_len:, :]
sorted_values, sorted_ix = torch.sort(importance_mask, dim=-1)
sorted_true_values, _ = torch.sort(torch.gather(unadj_importance_mask, dim=-1, index=sorted_ix), dim=-1)
true_thresholds = sorted_true_values[:, :, :, int(importance_mask.size(-1) * self.sparse_aggression)]
thresholds = sorted_values[:, :, :, int(importance_mask.size(-1) * self.sparse_aggression)]
self.true_threshmean = true_thresholds
self.threshmean = thresholds
if self.test_with_thresholds:
unadj_importance_mask = importance_mask.clone()
perhead_thresholds = self.tok_calibration_set[self.layer_idx - 1].to(unadj_importance_mask.device) # 0 does not have calibration data.
mask_tensor = threshold_to_mask(unadj_importance_mask, perhead_thresholds, min_sparse_index, bsz, q_len, key_len)
else:
importance_mask = torch.softmax(importance_mask + attention_mask, dim=-1)
sorted_indices = torch.argsort(importance_mask, dim=-1, descending=True)
sorted_indices = sorted_indices[:, :, -q_len:, :]
mask_tensor = sorted_index_to_mask(sorted_indices, attention_mask, min_sparse_index, bsz, q_len, key_len, self.sparse_aggression, self.sliding_window)
### Threshold variance investigation
if self.sliding_window is not None:
if not hasattr(self, "window_cache"):
self.window_cache = SlidingWindowCache(max_seq_len=1024,
sliding_window=self.sliding_window,
device=mask_tensor.device)
window = self.window_cache.get_window(q_len, key_len)
mask_tensor = enforce_sliding_window(mask_tensor, window)
final_mask = mask_tensor
self.final_mask_investigate = final_mask
attn_weights = attn_weights + mask_tensor + attention_mask
else:
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
attn_weights = attn_weights + attention_mask
else:
raise ValueError(f"Unknown eval mode {evalmode}")
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
if self.layer_idx > 0:
q_importance_tensor = self.producer.q_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(query_states.device) # [BH, Lq, D']
k_importance_tensor = self.producer.k_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(key_states.device) # [BH, Lk, D']
importance_mask = torch.bmm(q_importance_tensor, k_importance_tensor.transpose(-2, -1)) / math.sqrt(self.dDash) # [BH, Lq, Lk]
importance_mask = importance_mask.view(bsz, self.num_heads, q_len, key_len) # [B, H, Lq, Lk]
if self.lookahead == 0:
self.msemagn_loss = self.mseloss(attn_weights, importance_mask)
else:
self.msemagn_loss = self.mseloss(attn_weights[:, :, self.lookahead:, :], importance_mask[:, :, :-self.lookahead, :])
self.msemagn_loss = (self.msemagn_loss).mean(dim=(-1, -2))
self.msemagn_loss = self.msemagn_loss.mean()
if self.calc_hitrates:
self.tok_hit_acc, self.tok_mean_rank_corr, self.tok_max_rank_corr = calculate_hit_metrics(
estimated_importance=importance_mask,
true_importance=attn_weights,
top_k_ratio=0.5
)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if self.layer_idx > 0 and self.train_headpredictor:
head_importance_tensor = self.producer.head_importances[:, :, :, self.layer_idx % self.producer_frequency].float().to(attn_output.device)
attn_head_weights = attn_output.mean(dim=-1).permute(0, 2, 1)
self.headmsemagn_loss = self.headmseloss(attn_head_weights, head_importance_tensor).mean()
if self.calc_hitrates:
self.head_hit_acc, self.head_mean_rank_corr, self.head_max_rank_corr = calculate_hit_metrics(
estimated_importance=head_importance_tensor,
true_importance=attn_head_weights,
top_k_ratio=0.5
)
else:
self.headmsemagn_loss = 0
if self.calc_hitrates:
self.head_hit_acc, self.head_mean_rank_corr, self.head_max_rank_corr = 0, 0, 0
checkeverytime = hasattr(self, 'test_with_thresholds')
if checkeverytime:
checkeverytime = self.test_with_thresholds
if final_mask is not None:
if self.effective_sparsity is None or checkeverytime:
true_mask = final_mask + attention_mask
num_deact = true_mask.bool().sum(dim=-1) # Number of tokens disabled.
causally_deact = (attention_mask.bool()).sum(dim=-1).expand_as(num_deact) # Number of tokens disabled causally anyway
additional_deact = (num_deact - causally_deact)
num_active = (~attention_mask.bool()).sum(dim=-1).expand_as(num_deact) # Number of tokens active at this position if zero-sparsity
effective_sparsity = 100 * (additional_deact.float() / num_active.float()).mean().item()
self.effective_sparsity = effective_sparsity
print("Effective Sparsity:", effective_sparsity, "%\t Sequence Length:", q_len)
if self.layer_idx == 0:
if self.effective_sparsity is None:
self.effective_sparsity = 0.0
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, -1, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if self.producer is None:
try:
q_importance, k_importance = self.sparse_token_predictor(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value, # the same single cache
use_cache=use_cache,
layer_idx=self.layer_idx, # or pass 0
)
if self.train_headpredictor:
head_importances, past_key_value_hp = self.sparse_head_predictor(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value_hp,
use_cache=use_cache
)
head_importances = head_importances.view(bsz, q_len, self.num_heads, self.num_hidden_layers) # [B L H N]
q_len = attn_output.size(1)
k_len = k_importance.size(-1)
except:
print(traceback.format_exc())
import pdb; pdb.set_trace()
self.q_importance = q_importance
self.k_importance = k_importance
if self.train_headpredictor:
if self.head_importances is None:
self.head_importances = head_importances
else:
self.head_importances = torch.cat([self.head_importances, head_importances], dim=1)
# if self.layer_idx == 31:
# if q_len == 1:
# self.dtok += 1
# print(f"Primary Key-Value Shape: {past_key_value.predictor_primary_key[0].shape}, Importance: {past_key_value.predictor_importance_key[0].shape}, Tok-Decoded: {self.dtok}")
# else:
# self.dtok = 0
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
def convert_kvcache_experimental(model, config, producer_frequency):
producer_layer = None
producer_layer_device = None
layer_counter = {'idx': 0}
def recurse_convert(parent_module):
nonlocal producer_layer
nonlocal producer_layer_device
for name, module in parent_module._modules.items():
if len(list(module.children())) > 0:
recurse_convert(module)
if isinstance(module, LlamaAttention):
device = next(module.parameters()).device
dtype = next(module.parameters()).dtype
if layer_counter['idx'] % producer_frequency == 0:
new_module = LlamaAttentionExperimental(config).to(dtype).to(device)
producer_layer = new_module
producer_layer_device = device
else:
new_module = LlamaAttentionExperimental(
config,
producer=producer_layer,
layer_idx=layer_counter['idx']
).to(dtype).to(device)
new_module.load_state_dict(module.state_dict(), strict=False)
is_producer = layer_counter['idx'] % producer_frequency == 0
if is_producer:
print(f"Converted Producer layer '{name}' to LlamaAttentionExperimental at layer index {layer_counter['idx']}")
else:
print(f"Converted layer '{name}' to LlamaAttentionExperimental at layer index {layer_counter['idx']}")
parent_module._modules[name] = new_module
layer_counter['idx'] += 1
recurse_convert(model)
producer_layer = producer_layer.to(producer_layer_device)
return model
# ---------------------------------------------------------------------
# 1) Custom Config subclass
# ---------------------------------------------------------------------
class LlamaButlerConfig(LlamaConfig):
"""
Extends HF's LlamaConfig to hold optional extra parameters for the "Butler" logic.
You can store your custom attributes here, so they can be serialized in config.json.
"""
model_type = "llama_butler"
def __init__(
self,
eval_llm_mode="ExpPred",
token_sparse_method="fixed_50pc",
producer_frequency=8,
dDash=16,
attn_reduce_factor=4,
head_attn_reduce_factor=4,
intdim=256,
flash_attn=False,
train_headpredictor=False,
min_sparse_index=5,
lookahead=0,
sliding_window=None,
**kwargs
):
super().__init__(**kwargs)
self.eval_llm_mode = eval_llm_mode
self.token_sparse_method = token_sparse_method
self.producer_frequency = producer_frequency
self.dDash = dDash
self.attn_reduce_factor = attn_reduce_factor
self.head_attn_reduce_factor = head_attn_reduce_factor
self.intdim = intdim
self.flash_attn = flash_attn
self.train_headpredictor = train_headpredictor
self.min_sparse_index = min_sparse_index
self.lookahead = lookahead
self.sliding_window = sliding_window
# ---------------------------------------------------------------------
# 2) The main Butler model class
# ---------------------------------------------------------------------
class LlamaButlerForCausalLM(LlamaForCausalLM):
"""
A subclass of HF's LlamaForCausalLM that:
- Patches each LlamaAttention to your LlamaAttentionExperimental
- Sets specialized attributes (eval_llm_mode, etc.)
- Overrides _prepare_cache_for_generation to inject PredictorDynamicCache
"""
# Let HF auto-detect this config class from config.json:
config_class = LlamaButlerConfig
def __init__(self, config: LlamaButlerConfig):
super().__init__(config)
"""
HF's LlamaForCausalLM initializes:
self.model = LlamaModel(config)
self.lm_head = nn.Linear(...)
"""
# 1) Patch the underlying LlamaModel to replace LlamaAttention with LlamaAttentionExperimental
self.model = convert_kvcache_experimental(
self.model,
config,
config.producer_frequency
)
# 2) Optionally, set per-module attributes so each LlamaAttentionExperimental knows about them:
for module in self.model.modules():
if module.__class__.__name__.endswith("AttentionExperimental"):
# Set these from your config. Or you can hardcode them if you prefer.
module.eval_llm_mode = config.eval_llm_mode
module.token_sparse_method = config.token_sparse_method
module.set_token_sparsity() # e.g. sets module.sparse_aggression
module.producer_frequency = config.producer_frequency
module.dDash = config.dDash
module.attn_reduce_factor = config.attn_reduce_factor
module.head_attn_reduce_factor = config.head_attn_reduce_factor
module.intdim = config.intdim
module.flash_attn = config.flash_attn
module.train_headpredictor = config.train_headpredictor
module.min_sparse_index = config.min_sparse_index
module.lookahead = config.lookahead
module.sliding_window = config.sliding_window
module.num_layers_pred = config.producer_frequency # example usage
# If this is a "producer layer" (mod.layer_idx % freq == 0), run update_predictor():
if hasattr(module, "layer_idx") and (module.layer_idx % config.producer_frequency == 0):
module.update_predictor()
# 3) Patch the dynamic cache (past_key_values) creation. For your evaluation modes:
if config.eval_llm_mode in ["ExpPred", "ReplAttn"]:
self._prepare_cache_for_generation = self._patched_prepare_cache_for_generation.__get__(
self, self.__class__
)
# -----------------------------------------------------------------
# 3) The custom `_prepare_cache_for_generation` override
# -----------------------------------------------------------------
def _patched_prepare_cache_for_generation(
self,
generation_config: GenerationConfig,
model_kwargs: Dict,
*args,
**kwargs
):
"""
This override injects a PredictorDynamicCache
in place of the standard 'past_key_values'.
"""
if "past_key_values" not in model_kwargs or model_kwargs["past_key_values"] is None:
model_kwargs["past_key_values"] = PredictorDynamicCache()
return model_kwargs |