akdeniz27 commited on
Commit
b01d9a8
·
1 Parent(s): ccf0ff5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -0
README.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: tr
3
+ widget:
4
+ - text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı."
5
+ ---
6
+ # Turkish Named Entity Recognition (NER) Model
7
+ This model is the fine-tuned model of "xlm-roberta-base"
8
+ (a multilingual version of RoBERTa)
9
+ using a reviewed version of well known Turkish NER dataset
10
+ (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
11
+ # Fine-tuning parameters:
12
+ ```
13
+ task = "ner"
14
+ model_checkpoint = "xlm-roberta-base"
15
+ batch_size = 8
16
+ label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
17
+ max_length = 512
18
+ learning_rate = 2e-5
19
+ num_train_epochs = 4
20
+ weight_decay = 0.01
21
+ ```
22
+ # How to use:
23
+ ```
24
+ model = AutoModelForTokenClassification.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner")
25
+ tokenizer = AutoTokenizer.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner")
26
+ ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
27
+ ner("<your text here>")
28
+ ```
29
+ Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
30
+ # Reference test results:
31
+ * accuracy: 0.9919343118732742
32
+ * f1: 0.945422814532762
33
+ * precision: 0.9366551398931153
34
+ * recall: 0.9543561819346573