akashmaggon commited on
Commit
69562f0
·
1 Parent(s): 87271e3

Model save

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - fair_face
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-base-age-classification
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: fair_face
18
+ type: fair_face
19
+ config: '0.25'
20
+ split: train
21
+ args: '0.25'
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.7656465622209595
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-base-age-classification
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fair_face dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6669
36
+ - Accuracy: 0.7656
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 2
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.1069 | 1.0 | 385 | 0.9425 | 0.6209 |
69
+ | 0.8465 | 2.0 | 770 | 0.6669 | 0.7656 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.35.0
75
+ - Pytorch 2.1.0+cu118
76
+ - Datasets 2.14.6
77
+ - Tokenizers 0.14.1