File size: 2,190 Bytes
6a9f39f ed769b7 fe23428 6a9f39f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base-nvidia
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-nvidia
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) trained on [ajsbsd/datasets/nvidia-qa](https://huggingface.co/datasets/ajsbsd/nvidia-qa)
Imported from Kaggle (https://www.kaggle.com/datasets/gondimalladeepesh/nvidia-documentation-question-and-answer-pairs)
Q&A dataset for LLM finetuning about the NVIDIA about SDKs and blogs
This model is a fine-tuned version of google/flan-t5-small trained on
It achieves the following results on the evaluation set:
- Loss: 1.7117
- Rouge1: 0.4290
- Rouge2: 0.2696
- Rougel: 0.3880
- Rougelsum: 0.3928
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.4618 | 1.0 | 711 | 1.9707 | 0.3886 | 0.2185 | 0.3472 | 0.3522 |
| 2.0575 | 2.0 | 1422 | 1.8104 | 0.4066 | 0.2407 | 0.3647 | 0.3701 |
| 1.5839 | 3.0 | 2133 | 1.7351 | 0.4185 | 0.2558 | 0.3770 | 0.3821 |
| 1.4314 | 4.0 | 2844 | 1.7079 | 0.4252 | 0.2655 | 0.3840 | 0.3892 |
| 1.2582 | 5.0 | 3555 | 1.7117 | 0.4290 | 0.2696 | 0.3880 | 0.3928 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0
|