File size: 1,770 Bytes
1acd8ed b671fb9 1acd8ed b671fb9 1acd8ed b671fb9 1acd8ed 96d1a52 b671fb9 1acd8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Orderliness_binary
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Orderliness_binary
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6240
- Accuracy: 0.6477
- Precision: 0.6343
- Recall: 0.7206
- F1: 0.6747
- Auc: 0.6467
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log | 1.0 | 134 | 0.6558 | 0.6188 | 0.5921 | 0.7978 | 0.6797 | 0.6163 |
| No log | 2.0 | 268 | 0.6535 | 0.6170 | 0.5828 | 0.8603 | 0.6949 | 0.6135 |
| No log | 3.0 | 402 | 0.6240 | 0.6477 | 0.6343 | 0.7206 | 0.6747 | 0.6467 |
### Framework versions
- Transformers 4.44.1
- Pytorch 1.11.0
- Datasets 2.12.0
- Tokenizers 0.19.1
|