ajaymin28 commited on
Commit
60fbd0a
·
verified ·
1 Parent(s): e343d5d

Upload folder using huggingface_hub

Browse files
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lmsys/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "olora",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 512,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 256,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "fc1",
24
+ "up_proj",
25
+ "k_proj",
26
+ "q_proj",
27
+ "fc2",
28
+ "v_proj",
29
+ "o_proj",
30
+ "down_proj",
31
+ "gate_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bdeb3ca45f17a5eee81efcf0190e6f60e152dd2ec3e68fd48d4265f1ed0756b
3
+ size 1279324400
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "image_aspect_ratio": "pad",
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_hidden_size": 1024,
15
+ "mm_image_tower": "LanguageBind/LanguageBind_Image",
16
+ "mm_projector_lr": 2e-05,
17
+ "mm_projector_type": "mlp2x_gelu",
18
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
19
+ "mm_use_im_patch_token": false,
20
+ "mm_use_im_start_end": false,
21
+ "mm_video_tower": "LanguageBind/LanguageBind_Video_merge",
22
+ "mm_vision_select_feature": "patch",
23
+ "mm_vision_select_layer": -2,
24
+ "model_type": "llava",
25
+ "num_attention_heads": 32,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 32,
28
+ "pad_token_id": 0,
29
+ "pretraining_tp": 1,
30
+ "rms_norm_eps": 1e-05,
31
+ "rope_scaling": null,
32
+ "tie_word_embeddings": false,
33
+ "tokenizer_model_max_length": 3072,
34
+ "tokenizer_padding_side": "right",
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.31.0",
37
+ "use_cache": true,
38
+ "use_mm_proj": true,
39
+ "vocab_size": 32000
40
+ }
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fa7f724199b9e8b6c9125df4027edca6881d030d16ca6da1f899aee4aa2b340
3
+ size 41961648
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/runs/Nov01_13-07-07_evc29/events.out.tfevents.1730482400.evc29 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52b538463a1236ad8bfe8fc5a956757e32fb565b20c14ff5e51d70e490208e17
3
+ size 12843
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/runs/Nov01_17-59-53_evc33/events.out.tfevents.1730498895.evc33 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42659abf6ebaa1a72044459a74e1ea7ef324c0408ad923b6cd84f8068ab9deb7
3
+ size 15501
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/runs/Nov01_18-24-29_evc33/events.out.tfevents.1730500270.evc33 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce686b5af56de0a608acf15731685abdc147ae6601d3be8e4dd1b36197219f5c
3
+ size 15501
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 2048,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
[lora]video_llava_VRD_annotations_v5_3_p00_e01/videollava-7b-lora/trainer_state.json ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 63,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "learning_rate": 0.0001,
13
+ "loss": 0.6658,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.03,
18
+ "learning_rate": 0.0002,
19
+ "loss": 0.7264,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.05,
24
+ "learning_rate": 0.00019986740898848306,
25
+ "loss": 2.8052,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.06,
30
+ "learning_rate": 0.0001994699875614589,
31
+ "loss": 4.6815,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.08,
36
+ "learning_rate": 0.00019880878960910772,
37
+ "loss": 8.9002,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.1,
42
+ "learning_rate": 0.0001978855685095358,
43
+ "loss": 6.4843,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.11,
48
+ "learning_rate": 0.00019670277247913205,
49
+ "loss": 4.8092,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.13,
54
+ "learning_rate": 0.00019526353808033825,
55
+ "loss": 4.0773,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.14,
60
+ "learning_rate": 0.00019357168190404936,
61
+ "loss": 1.9528,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.16,
66
+ "learning_rate": 0.0001916316904487005,
67
+ "loss": 1.468,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.17,
72
+ "learning_rate": 0.00018944870822287956,
73
+ "loss": 1.5531,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.19,
78
+ "learning_rate": 0.00018702852410301554,
79
+ "loss": 1.2208,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.21,
84
+ "learning_rate": 0.00018437755598231856,
85
+ "loss": 1.0887,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.22,
90
+ "learning_rate": 0.00018150283375168114,
91
+ "loss": 0.9022,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.24,
96
+ "learning_rate": 0.00017841198065767107,
97
+ "loss": 0.7434,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.25,
102
+ "learning_rate": 0.00017511319308705198,
103
+ "loss": 0.6915,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.27,
108
+ "learning_rate": 0.00017161521883143934,
109
+ "loss": 0.637,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.29,
114
+ "learning_rate": 0.00016792733388972932,
115
+ "loss": 0.5706,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.3,
120
+ "learning_rate": 0.00016405931786981755,
121
+ "loss": 0.6681,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.32,
126
+ "learning_rate": 0.00016002142805483685,
127
+ "loss": 0.5531,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.33,
132
+ "learning_rate": 0.00015582437220268647,
133
+ "loss": 0.4999,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.35,
138
+ "learning_rate": 0.0001514792801509831,
139
+ "loss": 0.4621,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.37,
144
+ "learning_rate": 0.000146997674302732,
145
+ "loss": 0.4833,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.38,
150
+ "learning_rate": 0.0001423914390709861,
151
+ "loss": 0.454,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.4,
156
+ "learning_rate": 0.00013767278936351854,
157
+ "loss": 0.3534,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.41,
162
+ "learning_rate": 0.0001328542381910835,
163
+ "loss": 0.3566,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.43,
168
+ "learning_rate": 0.00012794856348516095,
169
+ "loss": 0.4366,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.44,
174
+ "learning_rate": 0.0001229687742131796,
175
+ "loss": 0.2906,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.46,
180
+ "learning_rate": 0.00011792807588107357,
181
+ "loss": 0.3372,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.48,
186
+ "learning_rate": 0.00011283983551465511,
187
+ "loss": 0.303,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.49,
192
+ "learning_rate": 0.00010771754621266466,
193
+ "loss": 0.3425,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.51,
198
+ "learning_rate": 0.00010257479136549889,
199
+ "loss": 0.3217,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.52,
204
+ "learning_rate": 9.742520863450115e-05,
205
+ "loss": 0.304,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.54,
210
+ "learning_rate": 9.228245378733537e-05,
211
+ "loss": 0.2773,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.56,
216
+ "learning_rate": 8.71601644853449e-05,
217
+ "loss": 0.2705,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.57,
222
+ "learning_rate": 8.207192411892646e-05,
223
+ "loss": 0.2788,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.59,
228
+ "learning_rate": 7.703122578682046e-05,
229
+ "loss": 0.319,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.6,
234
+ "learning_rate": 7.205143651483906e-05,
235
+ "loss": 0.2049,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.62,
240
+ "learning_rate": 6.714576180891654e-05,
241
+ "loss": 0.2985,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.63,
246
+ "learning_rate": 6.232721063648148e-05,
247
+ "loss": 0.2368,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.65,
252
+ "learning_rate": 5.7608560929013946e-05,
253
+ "loss": 0.2183,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.67,
258
+ "learning_rate": 5.300232569726804e-05,
259
+ "loss": 0.1911,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.68,
264
+ "learning_rate": 4.852071984901696e-05,
265
+ "loss": 0.2199,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.7,
270
+ "learning_rate": 4.417562779731355e-05,
271
+ "loss": 0.22,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.71,
276
+ "learning_rate": 3.997857194516319e-05,
277
+ "loss": 0.2412,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.73,
282
+ "learning_rate": 3.594068213018249e-05,
283
+ "loss": 0.1767,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.75,
288
+ "learning_rate": 3.207266611027069e-05,
289
+ "loss": 0.2461,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.76,
294
+ "learning_rate": 2.8384781168560693e-05,
295
+ "loss": 0.1473,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.78,
300
+ "learning_rate": 2.4886806912948035e-05,
301
+ "loss": 0.1925,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.79,
306
+ "learning_rate": 2.1588019342328968e-05,
307
+ "loss": 0.1692,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.81,
312
+ "learning_rate": 1.8497166248318876e-05,
313
+ "loss": 0.144,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.83,
318
+ "learning_rate": 1.562244401768144e-05,
319
+ "loss": 0.193,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.84,
324
+ "learning_rate": 1.2971475896984475e-05,
325
+ "loss": 0.1347,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.86,
330
+ "learning_rate": 1.0551291777120464e-05,
331
+ "loss": 0.1803,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.87,
336
+ "learning_rate": 8.368309551299536e-06,
337
+ "loss": 0.1922,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.89,
342
+ "learning_rate": 6.428318095950647e-06,
343
+ "loss": 0.2303,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.9,
348
+ "learning_rate": 4.7364619196617495e-06,
349
+ "loss": 0.1924,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.92,
354
+ "learning_rate": 3.2972275208679625e-06,
355
+ "loss": 0.143,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.94,
360
+ "learning_rate": 2.1144314904642195e-06,
361
+ "loss": 0.1413,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.95,
366
+ "learning_rate": 1.1912103908922945e-06,
367
+ "loss": 0.2225,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.97,
372
+ "learning_rate": 5.300124385410943e-07,
373
+ "loss": 0.1581,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.98,
378
+ "learning_rate": 1.3259101151694708e-07,
379
+ "loss": 0.1771,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 1.0,
384
+ "learning_rate": 0.0,
385
+ "loss": 0.1742,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 1.0,
390
+ "step": 63,
391
+ "total_flos": 9.717511327894733e+16,
392
+ "train_loss": 0.8942087006474299,
393
+ "train_runtime": 877.8737,
394
+ "train_samples_per_second": 1.139,
395
+ "train_steps_per_second": 0.072
396
+ }
397
+ ],
398
+ "max_steps": 63,
399
+ "num_train_epochs": 1,
400
+ "total_flos": 9.717511327894733e+16,
401
+ "trial_name": null,
402
+ "trial_params": null
403
+ }