ajaymin28 commited on
Commit
b59408f
·
verified ·
1 Parent(s): 650cd33

Upload folder using huggingface_hub

Browse files
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lmsys/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "olora",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 512,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 256,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "v_proj",
25
+ "fc1",
26
+ "k_proj",
27
+ "down_proj",
28
+ "fc2",
29
+ "o_proj",
30
+ "q_proj",
31
+ "gate_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7680a118a632f3d4c5af49ac0ebfb8584681616faf6a36bad3e0ac6589f9be6f
3
+ size 1279324400
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "image_aspect_ratio": "pad",
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_hidden_size": 1024,
15
+ "mm_image_tower": "LanguageBind/LanguageBind_Image",
16
+ "mm_projector_lr": 2e-05,
17
+ "mm_projector_type": "mlp2x_gelu",
18
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
19
+ "mm_use_im_patch_token": false,
20
+ "mm_use_im_start_end": false,
21
+ "mm_video_tower": "LanguageBind/LanguageBind_Video_merge",
22
+ "mm_vision_select_feature": "patch",
23
+ "mm_vision_select_layer": -2,
24
+ "model_type": "llava",
25
+ "num_attention_heads": 32,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 32,
28
+ "pad_token_id": 0,
29
+ "pretraining_tp": 1,
30
+ "rms_norm_eps": 1e-05,
31
+ "rope_scaling": null,
32
+ "tie_word_embeddings": false,
33
+ "tokenizer_model_max_length": 3072,
34
+ "tokenizer_padding_side": "right",
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.31.0",
37
+ "use_cache": true,
38
+ "use_mm_proj": true,
39
+ "vocab_size": 32000
40
+ }
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d406a0a3a6a9bab25e4294731fa698e36bcecbe7d7ff42a4f2ec03c4127ef986
3
+ size 41961648
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/runs/Oct31_18-01-45_evc33/events.out.tfevents.1730412553.evc33 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:150fc7523fcb0cdf27d548e8866133a3a88765c596fe2eaa499fb946224b5e71
3
+ size 5436
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/runs/Oct31_18-10-15_evc33/events.out.tfevents.1730412969.evc33 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3df60327e6e98e79c50610e952e47ac17e9df29bca3eac5a4677a741b53a7cc3
3
+ size 15486
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/runs/Oct31_18-10-51_evc29/events.out.tfevents.1730414182.evc29 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e265b583a6d51db0b71f43a7800ced373f82e3b7aebde0ea1299d8b5f6d92ca
3
+ size 25034
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 2048,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
[lora]video_llava_AG_annotations_v5_3_p00_e01/videollava-7b-lora/trainer_state.json ADDED
@@ -0,0 +1,775 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 125,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 5e-05,
13
+ "loss": 0.7254,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 0.0001,
19
+ "loss": 0.8051,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "learning_rate": 0.00015000000000000001,
25
+ "loss": 0.6532,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.03,
30
+ "learning_rate": 0.0002,
31
+ "loss": 1.4099,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.04,
36
+ "learning_rate": 0.00019996629653035126,
37
+ "loss": 4.2084,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.05,
42
+ "learning_rate": 0.00019986520883988232,
43
+ "loss": 3.3755,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.06,
48
+ "learning_rate": 0.00019969680506871137,
49
+ "loss": 2.3965,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.06,
54
+ "learning_rate": 0.00019946119873266613,
55
+ "loss": 1.9332,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.07,
60
+ "learning_rate": 0.00019915854864676664,
61
+ "loss": 1.7589,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.08,
66
+ "learning_rate": 0.00019878905881817252,
67
+ "loss": 0.8149,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.09,
72
+ "learning_rate": 0.00019835297830866826,
73
+ "loss": 0.5956,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.1,
78
+ "learning_rate": 0.00019785060106677818,
79
+ "loss": 0.4755,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.1,
84
+ "learning_rate": 0.00019728226572962473,
85
+ "loss": 0.352,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.11,
90
+ "learning_rate": 0.0001966483553946637,
91
+ "loss": 0.3675,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.12,
96
+ "learning_rate": 0.00019594929736144976,
97
+ "loss": 0.3288,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.13,
102
+ "learning_rate": 0.00019518556284360696,
103
+ "loss": 0.3673,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.14,
108
+ "learning_rate": 0.0001943576666511982,
109
+ "loss": 0.3603,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.14,
114
+ "learning_rate": 0.0001934661668437073,
115
+ "loss": 0.3627,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.15,
120
+ "learning_rate": 0.0001925116643538684,
121
+ "loss": 0.276,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.16,
126
+ "learning_rate": 0.00019149480258259533,
127
+ "loss": 0.2093,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.17,
132
+ "learning_rate": 0.00019041626696528503,
133
+ "loss": 0.2778,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.18,
138
+ "learning_rate": 0.0001892767845097864,
139
+ "loss": 0.2292,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.18,
144
+ "learning_rate": 0.00018807712330634642,
145
+ "loss": 0.2332,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.19,
150
+ "learning_rate": 0.0001868180920098644,
151
+ "loss": 0.2333,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.2,
156
+ "learning_rate": 0.00018550053929480202,
157
+ "loss": 0.1851,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.21,
162
+ "learning_rate": 0.00018412535328311814,
163
+ "loss": 0.1825,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.22,
168
+ "learning_rate": 0.0001826934609456129,
169
+ "loss": 0.2092,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.22,
174
+ "learning_rate": 0.00018120582747708502,
175
+ "loss": 0.18,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.23,
180
+ "learning_rate": 0.0001796634556457236,
181
+ "loss": 0.1736,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.24,
186
+ "learning_rate": 0.0001780673851171728,
187
+ "loss": 0.1706,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.25,
192
+ "learning_rate": 0.00017641869175372493,
193
+ "loss": 0.154,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.26,
198
+ "learning_rate": 0.00017471848688911464,
199
+ "loss": 0.166,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.26,
204
+ "learning_rate": 0.000172967916579403,
205
+ "loss": 0.1861,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.27,
210
+ "learning_rate": 0.00017116816083045602,
211
+ "loss": 0.1575,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.28,
216
+ "learning_rate": 0.0001693204328025389,
217
+ "loss": 0.1547,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.29,
222
+ "learning_rate": 0.00016742597799256182,
223
+ "loss": 0.1566,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.3,
228
+ "learning_rate": 0.00016548607339452853,
229
+ "loss": 0.1463,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.3,
234
+ "learning_rate": 0.00016350202663875386,
235
+ "loss": 0.1632,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.31,
240
+ "learning_rate": 0.0001614751751104301,
241
+ "loss": 0.1333,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.32,
246
+ "learning_rate": 0.00015940688504813662,
247
+ "loss": 0.1425,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.33,
252
+ "learning_rate": 0.00015729855062290022,
253
+ "loss": 0.1406,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.34,
258
+ "learning_rate": 0.00015515159299842707,
259
+ "loss": 0.1206,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.34,
264
+ "learning_rate": 0.00015296745937313987,
265
+ "loss": 0.1512,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.35,
270
+ "learning_rate": 0.00015074762200466556,
271
+ "loss": 0.1548,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.36,
276
+ "learning_rate": 0.00014849357721743168,
277
+ "loss": 0.1227,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.37,
282
+ "learning_rate": 0.00014620684439403962,
283
+ "loss": 0.1405,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.38,
288
+ "learning_rate": 0.0001438889649510956,
289
+ "loss": 0.1291,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.38,
294
+ "learning_rate": 0.00014154150130018866,
295
+ "loss": 0.1572,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.39,
300
+ "learning_rate": 0.00013916603579471705,
301
+ "loss": 0.1459,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.4,
306
+ "learning_rate": 0.000136764169663272,
307
+ "loss": 0.1416,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.41,
312
+ "learning_rate": 0.00013433752193029886,
313
+ "loss": 0.1227,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.42,
318
+ "learning_rate": 0.00013188772832476188,
319
+ "loss": 0.1335,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.42,
324
+ "learning_rate": 0.00012941644017754964,
325
+ "loss": 0.1093,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.43,
330
+ "learning_rate": 0.00012692532330836346,
331
+ "loss": 0.1375,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.44,
336
+ "learning_rate": 0.00012441605690283915,
337
+ "loss": 0.1319,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.45,
342
+ "learning_rate": 0.0001218903323806595,
343
+ "loss": 0.1296,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.46,
348
+ "learning_rate": 0.00011934985225541998,
349
+ "loss": 0.1365,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.46,
354
+ "learning_rate": 0.00011679632898701649,
355
+ "loss": 0.1162,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.47,
360
+ "learning_rate": 0.00011423148382732853,
361
+ "loss": 0.1095,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.48,
366
+ "learning_rate": 0.00011165704565997593,
367
+ "loss": 0.1223,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.49,
372
+ "learning_rate": 0.00010907474983493144,
373
+ "loss": 0.1104,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.5,
378
+ "learning_rate": 0.0001064863369987743,
379
+ "loss": 0.1311,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.5,
384
+ "learning_rate": 0.00010389355192137377,
385
+ "loss": 0.1123,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.51,
390
+ "learning_rate": 0.0001012981423197931,
391
+ "loss": 0.1275,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.52,
396
+ "learning_rate": 9.870185768020693e-05,
397
+ "loss": 0.1192,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.53,
402
+ "learning_rate": 9.610644807862625e-05,
403
+ "loss": 0.1355,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.54,
408
+ "learning_rate": 9.35136630012257e-05,
409
+ "loss": 0.1132,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.54,
414
+ "learning_rate": 9.092525016506858e-05,
415
+ "loss": 0.1176,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.55,
420
+ "learning_rate": 8.83429543400241e-05,
421
+ "loss": 0.1123,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.56,
426
+ "learning_rate": 8.57685161726715e-05,
427
+ "loss": 0.1032,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.57,
432
+ "learning_rate": 8.320367101298351e-05,
433
+ "loss": 0.1236,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.58,
438
+ "learning_rate": 8.065014774458003e-05,
439
+ "loss": 0.1222,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.58,
444
+ "learning_rate": 7.810966761934053e-05,
445
+ "loss": 0.1135,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.59,
450
+ "learning_rate": 7.558394309716088e-05,
451
+ "loss": 0.1222,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.6,
456
+ "learning_rate": 7.307467669163655e-05,
457
+ "loss": 0.1223,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.61,
462
+ "learning_rate": 7.058355982245037e-05,
463
+ "loss": 0.1387,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.62,
468
+ "learning_rate": 6.811227167523815e-05,
469
+ "loss": 0.1182,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.62,
474
+ "learning_rate": 6.566247806970119e-05,
475
+ "loss": 0.1332,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.63,
480
+ "learning_rate": 6.323583033672799e-05,
481
+ "loss": 0.1163,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.64,
486
+ "learning_rate": 6.083396420528298e-05,
487
+ "loss": 0.1085,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.65,
492
+ "learning_rate": 5.845849869981137e-05,
493
+ "loss": 0.1003,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.66,
498
+ "learning_rate": 5.611103504890444e-05,
499
+ "loss": 0.1281,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.66,
504
+ "learning_rate": 5.379315560596038e-05,
505
+ "loss": 0.1193,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.67,
510
+ "learning_rate": 5.1506422782568345e-05,
511
+ "loss": 0.1107,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.68,
516
+ "learning_rate": 4.9252377995334444e-05,
517
+ "loss": 0.1238,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.69,
522
+ "learning_rate": 4.703254062686017e-05,
523
+ "loss": 0.1248,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.7,
528
+ "learning_rate": 4.484840700157295e-05,
529
+ "loss": 0.1438,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.7,
534
+ "learning_rate": 4.270144937709981e-05,
535
+ "loss": 0.1052,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.71,
540
+ "learning_rate": 4.059311495186338e-05,
541
+ "loss": 0.1098,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.72,
546
+ "learning_rate": 3.852482488956992e-05,
547
+ "loss": 0.1247,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.73,
552
+ "learning_rate": 3.649797336124615e-05,
553
+ "loss": 0.1171,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.74,
558
+ "learning_rate": 3.45139266054715e-05,
559
+ "loss": 0.1088,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.74,
564
+ "learning_rate": 3.257402200743821e-05,
565
+ "loss": 0.1079,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.75,
570
+ "learning_rate": 3.0679567197461134e-05,
571
+ "loss": 0.1163,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.76,
576
+ "learning_rate": 2.8831839169543996e-05,
577
+ "loss": 0.0969,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.77,
582
+ "learning_rate": 2.7032083420597e-05,
583
+ "loss": 0.1169,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.78,
588
+ "learning_rate": 2.528151311088537e-05,
589
+ "loss": 0.1005,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.78,
594
+ "learning_rate": 2.3581308246275103e-05,
595
+ "loss": 0.1114,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.79,
600
+ "learning_rate": 2.1932614882827197e-05,
601
+ "loss": 0.1132,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.8,
606
+ "learning_rate": 2.03365443542764e-05,
607
+ "loss": 0.0937,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.81,
612
+ "learning_rate": 1.879417252291502e-05,
613
+ "loss": 0.1257,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.82,
618
+ "learning_rate": 1.730653905438714e-05,
619
+ "loss": 0.0907,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.82,
624
+ "learning_rate": 1.587464671688187e-05,
625
+ "loss": 0.1056,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.83,
630
+ "learning_rate": 1.4499460705197998e-05,
631
+ "loss": 0.106,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.84,
636
+ "learning_rate": 1.3181907990135622e-05,
637
+ "loss": 0.0989,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.85,
642
+ "learning_rate": 1.1922876693653585e-05,
643
+ "loss": 0.1121,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.86,
648
+ "learning_rate": 1.0723215490213634e-05,
649
+ "loss": 0.1147,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.86,
654
+ "learning_rate": 9.583733034714981e-06,
655
+ "loss": 0.1188,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.87,
660
+ "learning_rate": 8.505197417404687e-06,
661
+ "loss": 0.1029,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.88,
666
+ "learning_rate": 7.488335646131628e-06,
667
+ "loss": 0.1219,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.89,
672
+ "learning_rate": 6.533833156292679e-06,
673
+ "loss": 0.1069,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.9,
678
+ "learning_rate": 5.6423333488018095e-06,
679
+ "loss": 0.1071,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.9,
684
+ "learning_rate": 4.8144371563930476e-06,
685
+ "loss": 0.0988,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.91,
690
+ "learning_rate": 4.050702638550275e-06,
691
+ "loss": 0.0999,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.92,
696
+ "learning_rate": 3.3516446053363015e-06,
697
+ "loss": 0.1113,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.93,
702
+ "learning_rate": 2.717734270375272e-06,
703
+ "loss": 0.1059,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.94,
708
+ "learning_rate": 2.1493989332218468e-06,
709
+ "loss": 0.1381,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.94,
714
+ "learning_rate": 1.6470216913317626e-06,
715
+ "loss": 0.096,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.95,
720
+ "learning_rate": 1.2109411818274852e-06,
721
+ "loss": 0.1091,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.96,
726
+ "learning_rate": 8.41451353233369e-07,
727
+ "loss": 0.1315,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.97,
732
+ "learning_rate": 5.388012673338661e-07,
733
+ "loss": 0.1078,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.98,
738
+ "learning_rate": 3.0319493128866396e-07,
739
+ "loss": 0.1033,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.98,
744
+ "learning_rate": 1.3479116011769767e-07,
745
+ "loss": 0.1273,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.99,
750
+ "learning_rate": 3.370346964876036e-08,
751
+ "loss": 0.1164,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 1.0,
756
+ "learning_rate": 0.0,
757
+ "loss": 0.1103,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 1.0,
762
+ "step": 125,
763
+ "total_flos": 1.4802419430981632e+17,
764
+ "train_loss": 0.28404136127233504,
765
+ "train_runtime": 7778.9013,
766
+ "train_samples_per_second": 0.257,
767
+ "train_steps_per_second": 0.016
768
+ }
769
+ ],
770
+ "max_steps": 125,
771
+ "num_train_epochs": 1,
772
+ "total_flos": 1.4802419430981632e+17,
773
+ "trial_name": null,
774
+ "trial_params": null
775
+ }