ajaymin28 commited on
Commit
1d69bf0
1 Parent(s): 3ba3b01

Upload folder using huggingface_hub

Browse files
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lmsys/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "olora",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 512,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 256,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "o_proj",
25
+ "up_proj",
26
+ "fc2",
27
+ "k_proj",
28
+ "q_proj",
29
+ "down_proj",
30
+ "fc1",
31
+ "gate_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:462e8fd6f19a7fa277b05d36159cc93721ba03871d55f4629409d9d54afef5ac
3
+ size 1279324400
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "image_aspect_ratio": "pad",
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_hidden_size": 1024,
15
+ "mm_image_tower": "LanguageBind/LanguageBind_Image",
16
+ "mm_projector_lr": 2e-05,
17
+ "mm_projector_type": "mlp2x_gelu",
18
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
19
+ "mm_use_im_patch_token": false,
20
+ "mm_use_im_start_end": false,
21
+ "mm_video_tower": "LanguageBind/LanguageBind_Video_merge",
22
+ "mm_vision_select_feature": "patch",
23
+ "mm_vision_select_layer": -2,
24
+ "model_type": "llava",
25
+ "num_attention_heads": 32,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 32,
28
+ "pad_token_id": 0,
29
+ "pretraining_tp": 1,
30
+ "rms_norm_eps": 1e-05,
31
+ "rope_scaling": null,
32
+ "tie_word_embeddings": false,
33
+ "tokenizer_model_max_length": 3072,
34
+ "tokenizer_padding_side": "right",
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.31.0",
37
+ "use_cache": true,
38
+ "use_mm_proj": true,
39
+ "vocab_size": 32000
40
+ }
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1f3ae420aebe35c84685ba202476196eecc571bc9d2b6e2087ae0355c211183
3
+ size 41961648
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/runs/Oct31_20-49-46_evc29/events.out.tfevents.1730423772.evc29 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188f0fe0c4e096324a1660aebede1e032d23f39f85aafc6cc76dbe85645b1f52
3
+ size 34925
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 2048,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
[lora]video_llava_AG_annotations_v5_3_p02_e01/videollava-7b-lora/trainer_state.json ADDED
@@ -0,0 +1,1153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 188,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 3.3333333333333335e-05,
13
+ "loss": 0.8588,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 6.666666666666667e-05,
19
+ "loss": 0.8668,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "learning_rate": 0.0001,
25
+ "loss": 0.4201,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 0.00013333333333333334,
31
+ "loss": 0.554,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.03,
36
+ "learning_rate": 0.0001666666666666667,
37
+ "loss": 1.3247,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 0.0002,
43
+ "loss": 6.0931,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.04,
48
+ "learning_rate": 0.00019998510240408496,
49
+ "loss": 1.1824,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 0.00019994041405510705,
55
+ "loss": 0.5507,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.05,
60
+ "learning_rate": 0.0001998659482680456,
61
+ "loss": 0.5103,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.05,
66
+ "learning_rate": 0.0001997617272301248,
67
+ "loss": 0.4502,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.06,
72
+ "learning_rate": 0.00019962778199420265,
73
+ "loss": 0.4454,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.06,
78
+ "learning_rate": 0.0001994641524695193,
79
+ "loss": 0.381,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.07,
84
+ "learning_rate": 0.0001992708874098054,
85
+ "loss": 0.3121,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.07,
90
+ "learning_rate": 0.00019904804439875633,
91
+ "loss": 0.4303,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.08,
96
+ "learning_rate": 0.00019879568983287467,
97
+ "loss": 0.7679,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.09,
102
+ "learning_rate": 0.0001985138989016874,
103
+ "loss": 0.342,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.09,
108
+ "learning_rate": 0.00019820275556534304,
109
+ "loss": 0.4291,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.1,
114
+ "learning_rate": 0.00019786235252959553,
115
+ "loss": 0.3668,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.1,
120
+ "learning_rate": 0.00019749279121818235,
121
+ "loss": 0.3204,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.11,
126
+ "learning_rate": 0.0001970941817426052,
127
+ "loss": 0.3247,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.11,
132
+ "learning_rate": 0.00019666664286932198,
133
+ "loss": 0.2632,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.12,
138
+ "learning_rate": 0.00019621030198436006,
139
+ "loss": 0.2198,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.12,
144
+ "learning_rate": 0.0001957252950553616,
145
+ "loss": 0.2221,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.13,
150
+ "learning_rate": 0.00019521176659107142,
151
+ "loss": 0.2925,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.13,
156
+ "learning_rate": 0.0001946698695982806,
157
+ "loss": 0.2204,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.14,
162
+ "learning_rate": 0.00019409976553623766,
163
+ "loss": 0.2302,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.14,
168
+ "learning_rate": 0.0001935016242685415,
169
+ "loss": 0.2067,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.15,
174
+ "learning_rate": 0.00019287562401253022,
175
+ "loss": 0.18,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.15,
180
+ "learning_rate": 0.00019222195128618106,
181
+ "loss": 0.1601,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.16,
186
+ "learning_rate": 0.00019154080085253666,
187
+ "loss": 0.1822,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.16,
192
+ "learning_rate": 0.0001908323756616754,
193
+ "loss": 0.1766,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.17,
198
+ "learning_rate": 0.0001900968867902419,
199
+ "loss": 0.1895,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.18,
204
+ "learning_rate": 0.00018933455337855632,
205
+ "loss": 0.1712,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.18,
210
+ "learning_rate": 0.000188545602565321,
211
+ "loss": 0.1604,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.19,
216
+ "learning_rate": 0.0001877302694199442,
217
+ "loss": 0.1379,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.19,
222
+ "learning_rate": 0.00018688879687250067,
223
+ "loss": 0.1803,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.2,
228
+ "learning_rate": 0.0001860214356413501,
229
+ "loss": 0.1533,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.2,
234
+ "learning_rate": 0.00018512844415843514,
235
+ "loss": 0.1647,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.21,
240
+ "learning_rate": 0.00018421008849228118,
241
+ "loss": 0.1661,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.21,
246
+ "learning_rate": 0.00018326664226872065,
247
+ "loss": 0.1422,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.22,
252
+ "learning_rate": 0.00018229838658936564,
253
+ "loss": 0.1735,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.22,
258
+ "learning_rate": 0.00018130560994785325,
259
+ "loss": 0.1428,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.23,
264
+ "learning_rate": 0.00018028860814388827,
265
+ "loss": 0.145,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.23,
270
+ "learning_rate": 0.00017924768419510904,
271
+ "loss": 0.1489,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.24,
276
+ "learning_rate": 0.000178183148246803,
277
+ "loss": 0.1241,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.24,
282
+ "learning_rate": 0.00017709531747949796,
283
+ "loss": 0.1148,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.25,
288
+ "learning_rate": 0.0001759845160144579,
289
+ "loss": 0.1427,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.26,
294
+ "learning_rate": 0.00017485107481711012,
295
+ "loss": 0.151,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.26,
300
+ "learning_rate": 0.00017369533159843369,
301
+ "loss": 0.1428,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.27,
306
+ "learning_rate": 0.00017251763071433765,
307
+ "loss": 0.1457,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.27,
312
+ "learning_rate": 0.00017131832306305965,
313
+ "loss": 0.1532,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.28,
318
+ "learning_rate": 0.00017009776598061495,
319
+ "loss": 0.1244,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.28,
324
+ "learning_rate": 0.0001688563231343277,
325
+ "loss": 0.141,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.29,
330
+ "learning_rate": 0.00016759436441447545,
331
+ "loss": 0.1126,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.29,
336
+ "learning_rate": 0.00016631226582407952,
337
+ "loss": 0.1256,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.3,
342
+ "learning_rate": 0.00016501040936687443,
343
+ "loss": 0.1314,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.3,
348
+ "learning_rate": 0.00016368918293348892,
349
+ "loss": 0.1278,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.31,
354
+ "learning_rate": 0.00016234898018587337,
355
+ "loss": 0.1314,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.31,
360
+ "learning_rate": 0.00016099020044000727,
361
+ "loss": 0.1268,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.32,
366
+ "learning_rate": 0.00015961324854692254,
367
+ "loss": 0.1214,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.32,
372
+ "learning_rate": 0.00015821853477207708,
373
+ "loss": 0.1262,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.33,
378
+ "learning_rate": 0.00015680647467311557,
379
+ "loss": 0.1321,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.34,
384
+ "learning_rate": 0.0001553774889760533,
385
+ "loss": 0.1386,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.34,
390
+ "learning_rate": 0.00015393200344991995,
391
+ "loss": 0.125,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.35,
396
+ "learning_rate": 0.0001524704487799008,
397
+ "loss": 0.1346,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.35,
402
+ "learning_rate": 0.0001509932604390136,
403
+ "loss": 0.1284,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.36,
408
+ "learning_rate": 0.00014950087855835815,
409
+ "loss": 0.124,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.36,
414
+ "learning_rate": 0.00014799374779597867,
415
+ "loss": 0.1288,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.37,
420
+ "learning_rate": 0.00014647231720437686,
421
+ "loss": 0.1317,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.37,
426
+ "learning_rate": 0.00014493704009671613,
427
+ "loss": 0.1235,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.38,
432
+ "learning_rate": 0.00014338837391175582,
433
+ "loss": 0.1327,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.38,
438
+ "learning_rate": 0.0001418267800775565,
439
+ "loss": 0.1241,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.39,
444
+ "learning_rate": 0.00014025272387399674,
445
+ "loss": 0.114,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.39,
450
+ "learning_rate": 0.0001386666742941419,
451
+ "loss": 0.1277,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.4,
456
+ "learning_rate": 0.00013706910390450677,
457
+ "loss": 0.1313,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.4,
462
+ "learning_rate": 0.00013546048870425356,
463
+ "loss": 0.1123,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.41,
468
+ "learning_rate": 0.00013384130798336705,
469
+ "loss": 0.1117,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.41,
474
+ "learning_rate": 0.00013221204417984908,
475
+ "loss": 0.1139,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.42,
480
+ "learning_rate": 0.0001305731827359753,
481
+ "loss": 0.1108,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.43,
486
+ "learning_rate": 0.00012892521195365678,
487
+ "loss": 0.1321,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.43,
492
+ "learning_rate": 0.00012726862284894938,
493
+ "loss": 0.1105,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.44,
498
+ "learning_rate": 0.0001256039090057547,
499
+ "loss": 0.1224,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.44,
504
+ "learning_rate": 0.0001239315664287558,
505
+ "loss": 0.1289,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.45,
510
+ "learning_rate": 0.00012225209339563145,
511
+ "loss": 0.1021,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.45,
516
+ "learning_rate": 0.00012056599030859366,
517
+ "loss": 0.1076,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.46,
522
+ "learning_rate": 0.00011887375954529168,
523
+ "loss": 0.0938,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.46,
528
+ "learning_rate": 0.00011717590530912763,
529
+ "loss": 0.112,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.47,
534
+ "learning_rate": 0.00011547293347902812,
535
+ "loss": 0.1151,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.47,
540
+ "learning_rate": 0.00011376535145871684,
541
+ "loss": 0.1057,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.48,
546
+ "learning_rate": 0.0001120536680255323,
547
+ "loss": 0.1132,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.48,
552
+ "learning_rate": 0.00011033839317883701,
553
+ "loss": 0.1327,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.49,
558
+ "learning_rate": 0.00010862003798806196,
559
+ "loss": 0.1259,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.49,
564
+ "learning_rate": 0.00010689911444043248,
565
+ "loss": 0.1163,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.5,
570
+ "learning_rate": 0.00010517613528842097,
571
+ "loss": 0.1099,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.51,
576
+ "learning_rate": 0.00010345161389697082,
577
+ "loss": 0.1187,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.51,
582
+ "learning_rate": 0.00010172606409053886,
583
+ "loss": 0.1035,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.52,
588
+ "learning_rate": 0.0001,
589
+ "loss": 0.1052,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.52,
594
+ "learning_rate": 9.827393590946116e-05,
595
+ "loss": 0.1144,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.53,
600
+ "learning_rate": 9.654838610302923e-05,
601
+ "loss": 0.1058,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.53,
606
+ "learning_rate": 9.482386471157904e-05,
607
+ "loss": 0.104,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.54,
612
+ "learning_rate": 9.31008855595675e-05,
613
+ "loss": 0.1139,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.54,
618
+ "learning_rate": 9.137996201193805e-05,
619
+ "loss": 0.0994,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.55,
624
+ "learning_rate": 8.9661606821163e-05,
625
+ "loss": 0.1113,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.55,
630
+ "learning_rate": 8.79463319744677e-05,
631
+ "loss": 0.0933,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.56,
636
+ "learning_rate": 8.62346485412832e-05,
637
+ "loss": 0.1095,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.56,
642
+ "learning_rate": 8.452706652097186e-05,
643
+ "loss": 0.1193,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.57,
648
+ "learning_rate": 8.282409469087239e-05,
649
+ "loss": 0.1092,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.57,
654
+ "learning_rate": 8.112624045470835e-05,
655
+ "loss": 0.1069,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.58,
660
+ "learning_rate": 7.943400969140635e-05,
661
+ "loss": 0.1244,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.59,
666
+ "learning_rate": 7.774790660436858e-05,
667
+ "loss": 0.0923,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.59,
672
+ "learning_rate": 7.606843357124426e-05,
673
+ "loss": 0.1006,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.6,
678
+ "learning_rate": 7.43960909942453e-05,
679
+ "loss": 0.1144,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.6,
684
+ "learning_rate": 7.273137715105063e-05,
685
+ "loss": 0.0983,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.61,
690
+ "learning_rate": 7.107478804634325e-05,
691
+ "loss": 0.1156,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.61,
696
+ "learning_rate": 6.942681726402473e-05,
697
+ "loss": 0.118,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.62,
702
+ "learning_rate": 6.778795582015097e-05,
703
+ "loss": 0.0982,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.62,
708
+ "learning_rate": 6.615869201663296e-05,
709
+ "loss": 0.1091,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.63,
714
+ "learning_rate": 6.453951129574644e-05,
715
+ "loss": 0.1145,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.63,
720
+ "learning_rate": 6.293089609549325e-05,
721
+ "loss": 0.1293,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.64,
726
+ "learning_rate": 6.133332570585812e-05,
727
+ "loss": 0.1053,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.64,
732
+ "learning_rate": 5.9747276126003257e-05,
733
+ "loss": 0.1147,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.65,
738
+ "learning_rate": 5.817321992244351e-05,
739
+ "loss": 0.1047,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.65,
744
+ "learning_rate": 5.6611626088244194e-05,
745
+ "loss": 0.1078,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.66,
750
+ "learning_rate": 5.506295990328385e-05,
751
+ "loss": 0.102,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.66,
756
+ "learning_rate": 5.3527682795623146e-05,
757
+ "loss": 0.1208,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.67,
762
+ "learning_rate": 5.200625220402139e-05,
763
+ "loss": 0.1067,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.68,
768
+ "learning_rate": 5.0499121441641864e-05,
769
+ "loss": 0.0908,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.68,
774
+ "learning_rate": 4.900673956098644e-05,
775
+ "loss": 0.0943,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.69,
780
+ "learning_rate": 4.75295512200992e-05,
781
+ "loss": 0.1137,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.69,
786
+ "learning_rate": 4.606799655008009e-05,
787
+ "loss": 0.1121,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.7,
792
+ "learning_rate": 4.462251102394669e-05,
793
+ "loss": 0.1006,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.7,
798
+ "learning_rate": 4.3193525326884435e-05,
799
+ "loss": 0.099,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.71,
804
+ "learning_rate": 4.1781465227922957e-05,
805
+ "loss": 0.0894,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.71,
810
+ "learning_rate": 4.038675145307747e-05,
811
+ "loss": 0.102,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.72,
816
+ "learning_rate": 3.900979955999271e-05,
817
+ "loss": 0.1211,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.72,
822
+ "learning_rate": 3.7651019814126654e-05,
823
+ "loss": 0.1211,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.73,
828
+ "learning_rate": 3.6310817066511105e-05,
829
+ "loss": 0.1168,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.73,
834
+ "learning_rate": 3.498959063312558e-05,
835
+ "loss": 0.118,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.74,
840
+ "learning_rate": 3.36877341759205e-05,
841
+ "loss": 0.1018,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.74,
846
+ "learning_rate": 3.2405635585524565e-05,
847
+ "loss": 0.0907,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.75,
852
+ "learning_rate": 3.114367686567228e-05,
853
+ "loss": 0.1216,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.76,
858
+ "learning_rate": 2.9902234019385057e-05,
859
+ "loss": 0.1035,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.76,
864
+ "learning_rate": 2.8681676936940393e-05,
865
+ "loss": 0.1081,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.77,
870
+ "learning_rate": 2.7482369285662378e-05,
871
+ "loss": 0.1028,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.77,
876
+ "learning_rate": 2.6304668401566335e-05,
877
+ "loss": 0.0987,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.78,
882
+ "learning_rate": 2.514892518288988e-05,
883
+ "loss": 0.1022,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.78,
888
+ "learning_rate": 2.401548398554213e-05,
889
+ "loss": 0.1031,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.79,
894
+ "learning_rate": 2.290468252050204e-05,
895
+ "loss": 0.1217,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.79,
900
+ "learning_rate": 2.181685175319702e-05,
901
+ "loss": 0.085,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.8,
906
+ "learning_rate": 2.0752315804890977e-05,
907
+ "loss": 0.1038,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.8,
912
+ "learning_rate": 1.971139185611176e-05,
913
+ "loss": 0.1002,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.81,
918
+ "learning_rate": 1.8694390052146737e-05,
919
+ "loss": 0.1011,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.81,
924
+ "learning_rate": 1.7701613410634365e-05,
925
+ "loss": 0.1064,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.82,
930
+ "learning_rate": 1.6733357731279377e-05,
931
+ "loss": 0.0882,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.82,
936
+ "learning_rate": 1.5789911507718826e-05,
937
+ "loss": 0.0919,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.83,
942
+ "learning_rate": 1.4871555841564887e-05,
943
+ "loss": 0.0962,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.84,
948
+ "learning_rate": 1.3978564358649927e-05,
949
+ "loss": 0.1143,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.84,
954
+ "learning_rate": 1.311120312749935e-05,
955
+ "loss": 0.1157,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.85,
960
+ "learning_rate": 1.2269730580055805e-05,
961
+ "loss": 0.0837,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.85,
966
+ "learning_rate": 1.1454397434679021e-05,
967
+ "loss": 0.0962,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.86,
972
+ "learning_rate": 1.0665446621443708e-05,
973
+ "loss": 0.1027,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.86,
978
+ "learning_rate": 9.903113209758096e-06,
979
+ "loss": 0.0992,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.87,
984
+ "learning_rate": 9.1676243383246e-06,
985
+ "loss": 0.0911,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.87,
990
+ "learning_rate": 8.45919914746337e-06,
991
+ "loss": 0.0762,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.88,
996
+ "learning_rate": 7.778048713818975e-06,
997
+ "loss": 0.0984,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.88,
1002
+ "learning_rate": 7.124375987469767e-06,
1003
+ "loss": 0.1009,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.89,
1008
+ "learning_rate": 6.498375731458528e-06,
1009
+ "loss": 0.0996,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.89,
1014
+ "learning_rate": 5.900234463762366e-06,
1015
+ "loss": 0.1051,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.9,
1020
+ "learning_rate": 5.3301304017194135e-06,
1021
+ "loss": 0.0947,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.9,
1026
+ "learning_rate": 4.788233408928589e-06,
1027
+ "loss": 0.0923,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.91,
1032
+ "learning_rate": 4.27470494463843e-06,
1033
+ "loss": 0.0924,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.91,
1038
+ "learning_rate": 3.789698015639953e-06,
1039
+ "loss": 0.0985,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.92,
1044
+ "learning_rate": 3.3333571306780497e-06,
1045
+ "loss": 0.1121,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.93,
1050
+ "learning_rate": 2.905818257394799e-06,
1051
+ "loss": 0.0973,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.93,
1056
+ "learning_rate": 2.5072087818176382e-06,
1057
+ "loss": 0.1112,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.94,
1062
+ "learning_rate": 2.137647470404469e-06,
1063
+ "loss": 0.1,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.94,
1068
+ "learning_rate": 1.797244434656975e-06,
1069
+ "loss": 0.1001,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.95,
1074
+ "learning_rate": 1.48610109831262e-06,
1075
+ "loss": 0.1005,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.95,
1080
+ "learning_rate": 1.2043101671253554e-06,
1081
+ "loss": 0.0925,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.96,
1086
+ "learning_rate": 9.519556012436815e-07,
1087
+ "loss": 0.0943,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.96,
1092
+ "learning_rate": 7.291125901946027e-07,
1093
+ "loss": 0.0937,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.97,
1098
+ "learning_rate": 5.358475304807375e-07,
1099
+ "loss": 0.1082,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.97,
1104
+ "learning_rate": 3.7221800579735346e-07,
1105
+ "loss": 0.0971,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.98,
1110
+ "learning_rate": 2.382727698752474e-07,
1111
+ "loss": 0.1189,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.98,
1116
+ "learning_rate": 1.340517319543877e-07,
1117
+ "loss": 0.1026,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.99,
1122
+ "learning_rate": 5.958594489295921e-08,
1123
+ "loss": 0.1053,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.99,
1128
+ "learning_rate": 1.4897595915053242e-08,
1129
+ "loss": 0.095,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 1.0,
1134
+ "learning_rate": 0.0,
1135
+ "loss": 0.0843,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 1.0,
1140
+ "step": 188,
1141
+ "total_flos": 2.199699904832471e+17,
1142
+ "train_loss": 0.1986531609312651,
1143
+ "train_runtime": 11599.3664,
1144
+ "train_samples_per_second": 0.259,
1145
+ "train_steps_per_second": 0.016
1146
+ }
1147
+ ],
1148
+ "max_steps": 188,
1149
+ "num_train_epochs": 1,
1150
+ "total_flos": 2.199699904832471e+17,
1151
+ "trial_name": null,
1152
+ "trial_params": null
1153
+ }