File size: 120,408 Bytes
56b59b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 |
import sys
from shutil import rmtree
import shutil
import json # Mangio fork using json for preset saving
import datetime
import unicodedata
from glob import glob1
from signal import SIGTERM
import librosa
import requests
import os
now_dir = os.getcwd()
sys.path.append(now_dir)
import lib.globals.globals as rvc_globals
from LazyImport import lazyload
import mdx
from mdx_processing_script import get_model_list,id_to_ptm,prepare_mdx,run_mdx
math = lazyload('math')
import traceback
import warnings
tensorlowest = lazyload('tensorlowest')
import faiss
ffmpeg = lazyload('ffmpeg')
np = lazyload("numpy")
torch = lazyload('torch')
re = lazyload('regex')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
import logging
from random import shuffle
from subprocess import Popen
import easy_infer
import audioEffects
gr = lazyload("gradio")
SF = lazyload("soundfile")
SFWrite = SF.write
from config import Config
import fairseq
from i18n import I18nAuto
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
from infer_uvr5 import _audio_pre_, _audio_pre_new
from MDXNet import MDXNetDereverb
from my_utils import load_audio
from train.process_ckpt import change_info, extract_small_model, merge, show_info
from vc_infer_pipeline import VC
from sklearn.cluster import MiniBatchKMeans
import time
import threading
from shlex import quote as SQuote
RQuote = lambda val: SQuote(str(val))
tmp = os.path.join(now_dir, "TEMP")
runtime_dir = os.path.join(now_dir, "runtime/Lib/site-packages")
directories = ['logs', 'audios', 'datasets', 'weights']
_Models = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/"
stem_naming = "https://pastebin.com/raw/mpH4hRcF"
model_params = "https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/model_data.json"
model_params = requests.get(model_params).json()
stem_naming = requests.get(stem_naming).json()
rmtree(tmp, ignore_errors=True)
rmtree(os.path.join(runtime_dir, "infer_pack"), ignore_errors=True)
rmtree(os.path.join(runtime_dir, "uvr5_pack"), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
for folder in directories:
os.makedirs(os.path.join(now_dir, folder), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
logging.getLogger("numba").setLevel(logging.WARNING)
try:
file = open('csvdb/stop.csv', 'x')
file.close()
except FileExistsError: pass
global DoFormant, Quefrency, Timbre
DoFormant = rvc_globals.DoFormant
Quefrency = rvc_globals.Quefrency
Timbre = rvc_globals.Timbre
config = Config()
if(config.dml==True):
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward=forward_dml
i18n = I18nAuto()
i18n.print()
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False
keywords = ["10", "16", "20", "30", "40", "A2", "A3", "A4", "P4", "A50", "500", "A60",
"70", "80", "90", "M4", "T4", "TITAN"]
if torch.cuda.is_available() or ngpu != 0:
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i).upper()
if any(keyword in gpu_name for keyword in keywords):
if_gpu_ok = True
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(int(torch.cuda.get_device_properties(i).total_memory / 1e9 + 0.4))
gpu_info = "\n".join(gpu_infos) if if_gpu_ok and gpu_infos else "Unfortunately, there is no compatible GPU available to support your training."
default_batch_size = min(mem) if if_gpu_ok and gpu_infos else 1
gpus = "-".join(i[0] for i in gpu_infos)
hubert_model = None
def load_hubert():
global hubert_model
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"], suffix="")
hubert_model = models[0].to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
hubert_model.eval()
datasets_root = "datasets"
weight_root = "weights"
weight_uvr5_root = "uvr5_weights"
index_root = "logs"
fshift_root = "formantshiftcfg"
audio_root = "audios"
audio_others_root = "audio-others"
sup_audioext = {'wav', 'mp3', 'flac', 'ogg', 'opus',
'm4a', 'mp4', 'aac', 'alac', 'wma',
'aiff', 'webm', 'ac3'}
names = [os.path.join(root, file)
for root, _, files in os.walk(weight_root)
for file in files
if file.endswith((".pth", ".onnx"))]
indexes_list = [os.path.join(root, name)
for root, _, files in os.walk(index_root, topdown=False)
for name in files
if name.endswith(".index") and "trained" not in name]
audio_paths = [os.path.join(root, name)
for root, _, files in os.walk(audio_root, topdown=False)
for name in files
if name.endswith(tuple(sup_audioext))]
audio_others_paths = [os.path.join(root, name)
for root, _, files in os.walk(audio_others_root, topdown=False)
for name in files
if name.endswith(tuple(sup_audioext))]
uvr5_names = [name.replace(".pth", "")
for name in os.listdir(weight_uvr5_root)
if name.endswith(".pth") or "onnx" in name]
check_for_name = lambda: sorted(names)[0] if names else ''
datasets=[]
for foldername in os.listdir(os.path.join(now_dir, datasets_root)):
if "." not in foldername:
datasets.append(os.path.join(easy_infer.find_folder_parent(".","pretrained"),"datasets",foldername))
def get_dataset():
if len(datasets) > 0:
return sorted(datasets)[0]
else:
return ''
def update_model_choices(select_value):
model_ids = get_model_list()
model_ids_list = list(model_ids)
if select_value == "VR":
return {"choices": uvr5_names, "__type__": "update"}
elif select_value == "MDX":
return {"choices": model_ids_list, "__type__": "update"}
def update_dataset_list(name):
new_datasets = []
for foldername in os.listdir(os.path.join(now_dir, datasets_root)):
if "." not in foldername:
new_datasets.append(os.path.join(easy_infer.find_folder_parent(".","pretrained"),"datasets",foldername))
return gr.Dropdown.update(choices=new_datasets)
def get_indexes():
indexes_list = [
os.path.join(dirpath, filename)
for dirpath, _, filenames in os.walk(index_root)
for filename in filenames
if filename.endswith(".index") and "trained" not in filename
]
return indexes_list if indexes_list else ''
def get_fshift_presets():
fshift_presets_list = [
os.path.join(dirpath, filename)
for dirpath, _, filenames in os.walk(fshift_root)
for filename in filenames
if filename.endswith(".txt")
]
return fshift_presets_list if fshift_presets_list else ''
import soundfile as sf
def generate_output_path(output_folder, base_name, extension):
# Generar un nombre único para el archivo de salida
index = 1
while True:
output_path = os.path.join(output_folder, f"{base_name}_{index}.{extension}")
if not os.path.exists(output_path):
return output_path
index += 1
def combine_and_save_audios(audio1_path, audio2_path, output_path, volume_factor_audio1, volume_factor_audio2):
audio1, sr1 = librosa.load(audio1_path, sr=None)
audio2, sr2 = librosa.load(audio2_path, sr=None)
# Alinear las tasas de muestreo
if sr1 != sr2:
if sr1 > sr2:
audio2 = librosa.resample(audio2, orig_sr=sr2, target_sr=sr1)
else:
audio1 = librosa.resample(audio1, orig_sr=sr1, target_sr=sr2)
# Ajustar los audios para que tengan la misma longitud
target_length = min(len(audio1), len(audio2))
audio1 = librosa.util.fix_length(audio1, target_length)
audio2 = librosa.util.fix_length(audio2, target_length)
# Ajustar el volumen de los audios multiplicando por el factor de ganancia
if volume_factor_audio1 != 1.0:
audio1 *= volume_factor_audio1
if volume_factor_audio2 != 1.0:
audio2 *= volume_factor_audio2
# Combinar los audios
combined_audio = audio1 + audio2
sf.write(output_path, combined_audio, sr1)
# Resto de tu código...
# Define función de conversión llamada por el botón
def audio_combined(audio1_path, audio2_path, volume_factor_audio1=1.0, volume_factor_audio2=1.0, reverb_enabled=False, compressor_enabled=False, noise_gate_enabled=False):
output_folder = os.path.join(now_dir, "audio-outputs")
os.makedirs(output_folder, exist_ok=True)
# Generar nombres únicos para los archivos de salida
base_name = "combined_audio"
extension = "wav"
output_path = generate_output_path(output_folder, base_name, extension)
print(reverb_enabled)
print(compressor_enabled)
print(noise_gate_enabled)
if reverb_enabled or compressor_enabled or noise_gate_enabled:
# Procesa el primer audio con los efectos habilitados
base_name = "effect_audio"
output_path = generate_output_path(output_folder, base_name, extension)
processed_audio_path = audioEffects.process_audio(audio2_path, output_path, reverb_enabled, compressor_enabled, noise_gate_enabled)
base_name = "combined_audio"
output_path = generate_output_path(output_folder, base_name, extension)
# Combina el audio procesado con el segundo audio usando audio_combined
combine_and_save_audios(audio1_path, processed_audio_path, output_path, volume_factor_audio1, volume_factor_audio2)
return i18n("Conversion complete!"), output_path
else:
base_name = "combined_audio"
output_path = generate_output_path(output_folder, base_name, extension)
# No hay efectos habilitados, combina directamente los audios sin procesar
combine_and_save_audios(audio1_path, audio2_path, output_path, volume_factor_audio1, volume_factor_audio2)
return i18n("Conversion complete!"), output_path
def vc_single(
sid: str,
input_audio_path0: str,
input_audio_path1: str,
f0_up_key: int,
f0_file: str,
f0_method: str,
file_index: str,
file_index2: str,
index_rate: float,
filter_radius: int,
resample_sr: int,
rms_mix_rate: float,
protect: float,
crepe_hop_length: int,
f0_min: int,
note_min: str,
f0_max: int,
note_max: str,
f0_autotune: bool,
):
global total_time
total_time = 0
start_time = time.time()
global tgt_sr, net_g, vc, hubert_model, version
rmvpe_onnx = True if f0_method == "rmvpe_onnx" else False
if not input_audio_path0 and not input_audio_path1:
return "You need to upload an audio", None
if (not os.path.exists(input_audio_path0)) and (not os.path.exists(os.path.join(now_dir, input_audio_path0))):
return "Audio was not properly selected or doesn't exist", None
input_audio_path1 = input_audio_path1 or input_audio_path0
print(f"\nStarting inference for '{os.path.basename(input_audio_path1)}'")
print("-------------------")
f0_up_key = int(f0_up_key)
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
f0_min = note_to_hz(note_min) if note_min else 50
f0_max = note_to_hz(note_max) if note_max else 1100
print(f"Converted Min pitch: freq - {f0_min}\n"
f"Converted Max pitch: freq - {f0_max}")
else:
f0_min = f0_min or 50
f0_max = f0_max or 1100
try:
input_audio_path1 = input_audio_path1 or input_audio_path0
print(f"Attempting to load {input_audio_path1}....")
audio = load_audio(input_audio_path1,
16000,
DoFormant=rvc_globals.DoFormant,
Quefrency=rvc_globals.Quefrency,
Timbre=rvc_globals.Timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if not hubert_model:
print("Loading hubert for the first time...")
load_hubert()
try:
if_f0 = cpt.get("f0", 1)
except NameError:
message = "Model was not properly selected"
print(message)
return message, None
file_index = (
file_index.strip(" ").strip('"').strip("\n").strip('"').strip(" ").replace("trained", "added")
) if file_index != "" else file_index2
try:
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
input_audio_path1,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
crepe_hop_length,
f0_autotune,
rmvpe_onnx,
f0_file=f0_file,
f0_min=f0_min,
f0_max=f0_max
)
except AssertionError:
message = "Mismatching index version detected (v1 with v2, or v2 with v1)."
print(message)
return message, None
except NameError:
message = "RVC libraries are still loading. Please try again in a few seconds."
print(message)
return message, None
if tgt_sr != resample_sr >= 16000:
tgt_sr = resample_sr
index_info = "Using index:%s." % file_index if os.path.exists(file_index) else "Index not used."
end_time = time.time()
total_time = end_time - start_time
return f"Success.\n {index_info}\nTime:\n npy:{times[0]}, f0:{times[1]}, infer:{times[2]}\nTotal Time: {total_time} seconds", (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
def vc_multi(
sid,
dir_path,
opt_root,
paths,
f0_up_key,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
format1,
crepe_hop_length,
f0_min,
note_min,
f0_max,
note_max,
):
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
f0_min = note_to_hz(note_min) if note_min else 50
f0_max = note_to_hz(note_max) if note_max else 1100
print(f"Converted Min pitch: freq - {f0_min}\n"
f"Converted Max pitch: freq - {f0_max}")
else:
f0_min = f0_min or 50
f0_max = f0_max or 1100
try:
dir_path, opt_root = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [dir_path, opt_root]]
os.makedirs(opt_root, exist_ok=True)
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] if dir_path else [path.name for path in paths]
infos = []
for path in paths:
info, opt = vc_single(sid, path, None, f0_up_key, None, f0_method, file_index, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect, crepe_hop_length, f0_min, note_min, f0_max, note_max)
if "Success" in info:
try:
tgt_sr, audio_opt = opt
base_name = os.path.splitext(os.path.basename(path))[0]
output_path = f"{opt_root}/{base_name}.{format1}"
path, extension = output_path, format1
path, extension = output_path if format1 in ["wav", "flac", "mp3", "ogg", "aac", "m4a"] else f"{output_path}.wav", format1
SFWrite(path, audio_opt, tgt_sr)
#sys.stdout.write("\nFile Written Successfully with SFWrite") # Debugging print
if os.path.exists(path) and extension not in ["wav", "flac", "mp3", "ogg", "aac", "m4a"]:
sys.stdout.write(f"Running command: ffmpeg -i {RQuote(path)} -vn {RQuote(path[:-4] + '.' + extension)} -q:a 2 -y")
os.system(f"ffmpeg -i {RQuote(path)} -vn {RQuote(path[:-4] + '.' + extension)} -q:a 2 -y")
#print(f"\nFile Converted to {extension} using ffmpeg") # Debugging print
except:
info += traceback.format_exc()
print(f"\nException encountered: {info}") # Debugging print
infos.append(f"{os.path.basename(path)}->{info}")
yield "\n".join(infos)
yield "\n".join(infos)
except:
yield traceback.format_exc()
def download_model_mdx(model_url, model_path):
if not os.path.exists(model_path):
print(f"Downloading model from {model_url}...")
response = requests.get(model_url, stream=True)
if response.status_code == 200:
with open(model_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print("Model downloaded successfully.")
else:
print("Failed to download model.")
else:
print("Model already exists. Skipping download.")
def delete_model_mdx(model_path):
if os.path.exists(model_path):
os.remove(model_path)
print("Model deleted successfully.")
else:
print("Model does not exist. No need to delete.")
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0,architecture):
infos = []
if architecture == "VR":
try:
inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]]
usable_files = [os.path.join(inp_root, file)
for file in os.listdir(inp_root)
if file.endswith(tuple(sup_audioext))]
pre_fun = MDXNetDereverb(15) if model_name == "onnx_dereverb_By_FoxJoy" else (_audio_pre_ if "DeEcho" not in model_name else _audio_pre_new)(
agg=int(agg),
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
device=config.device,
is_half=config.is_half,
)
try:
if paths != None:
paths = [path.name for path in paths]
else:
paths = usable_files
except:
traceback.print_exc()
paths = usable_files
print(paths)
for path in paths:
inp_path = os.path.join(inp_root, path)
need_reformat, done = 1, 0
try:
info = ffmpeg.probe(inp_path, cmd="ffprobe")
if info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100":
need_reformat = 0
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0)
done = 1
except:
traceback.print_exc()
if need_reformat:
tmp_path = f"{tmp}/{os.path.basename(inp_path)}.reformatted.wav"
os.system(f"ffmpeg -i {inp_path} -vn -acodec pcm_s16le -ac 2 -ar 44100 {tmp_path} -y")
inp_path = tmp_path
try:
if not done:
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0)
infos.append(f"{os.path.basename(inp_path)}->Success")
yield "\n".join(infos)
except:
infos.append(f"{os.path.basename(inp_path)}->{traceback.format_exc()}")
yield "\n".join(infos)
except:
infos.append(traceback.format_exc())
yield "\n".join(infos)
finally:
try:
if model_name == "onnx_dereverb_By_FoxJoy":
del pre_fun.pred.model
del pre_fun.pred.model_
else:
del pre_fun.model
del pre_fun
except: traceback.print_exc()
print("clean_empty_cache")
if torch.cuda.is_available(): torch.cuda.empty_cache()
yield "\n".join(infos)
elif architecture == "MDX":
try:
model_id = model_name
model_url = _Models + model_id
model_path = os.path.join(now_dir, "tmp_models", model_id)
download_model_mdx(model_url, model_path)
infos.append(i18n("Starting audio conversion... (This might take a moment)"))
yield "\n".join(infos)
inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]]
usable_files = [os.path.join(inp_root, file)
for file in os.listdir(inp_root)
if file.endswith(tuple(sup_audioext))]
try:
if paths != None:
paths = [path.name for path in paths]
else:
paths = usable_files
except:
traceback.print_exc()
paths = usable_files
print(paths)
invert=True
denoise=True
use_custom_parameter=True
dim_f=2048
dim_t=256
n_fft=7680
use_custom_compensation=True
compensation=1.025
suffix = "Vocals_custom" #@param ["Vocals", "Drums", "Bass", "Other"]{allow-input: true}
suffix_invert = "Instrumental_custom" #@param ["Instrumental", "Drumless", "Bassless", "Instruments"]{allow-input: true}
print_settings = True # @param{type:"boolean"}
onnx = model_path
compensation = compensation if use_custom_compensation or use_custom_parameter else None
mdx_model = prepare_mdx(onnx, use_custom_parameter, dim_f, dim_t, n_fft, compensation=compensation)
for path in paths:
#inp_path = os.path.join(inp_root, path)
suffix_naming = suffix if use_custom_parameter else None
diff_suffix_naming = suffix_invert if use_custom_parameter else None
run_mdx(onnx, mdx_model, path, format0, diff=invert,suffix=suffix_naming,diff_suffix=diff_suffix_naming,denoise=denoise)
if print_settings:
print()
print('[MDX-Net_Colab settings used]')
print(f'Model used: {onnx}')
print(f'Model MD5: {mdx.MDX.get_hash(onnx)}')
print(f'Model parameters:')
print(f' -dim_f: {mdx_model.dim_f}')
print(f' -dim_t: {mdx_model.dim_t}')
print(f' -n_fft: {mdx_model.n_fft}')
print(f' -compensation: {mdx_model.compensation}')
print()
print('[Input file]')
print('filename(s): ')
for filename in paths:
print(f' -{filename}')
infos.append(f"{os.path.basename(filename)}->Success")
yield "\n".join(infos)
except:
infos.append(traceback.format_exc())
yield "\n".join(infos)
finally:
print("clean_empty_cache")
if torch.cuda.is_available(): torch.cuda.empty_cache()
def get_vc(sid, to_return_protect0, to_return_protect1):
global n_spk, tgt_sr, net_g, vc, cpt, version, hubert_model
if not sid:
if hubert_model is not None:
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
if_f0, version = cpt.get("f0", 1), cpt.get("version", "v1")
net_g = (SynthesizerTrnMs256NSFsid if version == "v1" else SynthesizerTrnMs768NSFsid)(
*cpt["config"], is_half=config.is_half) if if_f0 == 1 else (SynthesizerTrnMs256NSFsid_nono if version == "v1" else SynthesizerTrnMs768NSFsid_nono)(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return ({"visible": False, "__type__": "update"},) * 3
print(f"loading {sid}")
cpt = torch.load(sid, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if cpt.get("f0", 1) == 0:
to_return_protect0 = to_return_protect1 = {"visible": False, "value": 0.5, "__type__": "update"}
else:
to_return_protect0 = {"visible": True, "value": to_return_protect0, "__type__": "update"}
to_return_protect1 = {"visible": True, "value": to_return_protect1, "__type__": "update"}
version = cpt.get("version", "v1")
net_g = (SynthesizerTrnMs256NSFsid if version == "v1" else SynthesizerTrnMs768NSFsid)(
*cpt["config"], is_half=config.is_half) if cpt.get("f0", 1) == 1 else (SynthesizerTrnMs256NSFsid_nono if version == "v1" else SynthesizerTrnMs768NSFsid_nono)(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
net_g = net_g.half() if config.is_half else net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
return (
{"visible": False, "maximum": n_spk, "__type__": "update"},
to_return_protect0,
to_return_protect1
)
def change_choices():
names = [os.path.join(root, file)
for root, _, files in os.walk(weight_root)
for file in files
if file.endswith((".pth", ".onnx"))]
indexes_list = [os.path.join(root, name) for root, _, files in os.walk(index_root, topdown=False) for name in files if name.endswith(".index") and "trained" not in name]
audio_paths = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))]
return (
{"choices": sorted(names), "__type__": "update"},
{"choices": sorted(indexes_list), "__type__": "update"},
{"choices": sorted(audio_paths), "__type__": "update"}
)
def change_choices3():
audio_paths = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))]
audio_others_paths = [os.path.join(audio_others_root, file) for file in os.listdir(os.path.join(now_dir, "audio-others"))]
return (
{"choices": sorted(audio_others_paths), "__type__": "update"},
{"choices": sorted(audio_paths), "__type__": "update"}
)
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
def if_done(done, p):
while p.poll() is None:
time.sleep(0.5)
done[0] = True
def if_done_multi(done, ps):
while not all(p.poll() is not None for p in ps):
time.sleep(0.5)
done[0] = True
def formant_enabled(cbox, qfrency, tmbre):
global DoFormant, Quefrency, Timbre
DoFormant = cbox
Quefrency = qfrency
Timbre = tmbre
rvc_globals.DoFormant = cbox
rvc_globals.Quefrency = qfrency
rvc_globals.Timbre = tmbre
visibility_update = {"visible": DoFormant, "__type__": "update"}
return (
{"value": DoFormant, "__type__": "update"},
) + (visibility_update,) * 6
def formant_apply(qfrency, tmbre):
global Quefrency, Timbre, DoFormant
Quefrency = qfrency
Timbre = tmbre
DoFormant = True
rvc_globals.DoFormant = True
rvc_globals.Quefrency = qfrency
rvc_globals.Timbre = tmbre
return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
def update_fshift_presets(preset, qfrency, tmbre):
if preset:
with open(preset, 'r') as p:
content = p.readlines()
qfrency, tmbre = content[0].strip(), content[1]
formant_apply(qfrency, tmbre)
else:
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
return (
{"choices": get_fshift_presets(), "__type__": "update"},
{"value": qfrency, "__type__": "update"},
{"value": tmbre, "__type__": "update"},
)
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
sr = sr_dict[sr]
log_dir = os.path.join(now_dir, "logs", exp_dir)
log_file = os.path.join(log_dir, "preprocess.log")
os.makedirs(log_dir, exist_ok=True)
with open(log_file, "w") as f: pass
cmd = (
f"{config.python_cmd} "
"trainset_preprocess_pipeline_print.py "
f"{trainset_dir} "
f"{RQuote(sr)} "
f"{RQuote(n_p)} "
f"{log_dir} "
f"{RQuote(config.noparallel)}"
)
print(cmd)
p = Popen(cmd, shell=True)
done = [False]
threading.Thread(target=if_done, args=(done,p,)).start()
while not done[0]:
with open(log_file, "r") as f:
yield f.read()
time.sleep(1)
with open(log_file, "r") as f:
log = f.read()
print(log)
yield log
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
gpus = gpus.split("-")
log_dir = f"{now_dir}/logs/{exp_dir}"
log_file = f"{log_dir}/extract_f0_feature.log"
os.makedirs(log_dir, exist_ok=True)
with open(log_file, "w") as f: pass
if if_f0:
cmd = (
f"{config.python_cmd} extract_f0_print.py {log_dir} "
f"{RQuote(n_p)} {RQuote(f0method)} {RQuote(echl)}"
)
print(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
while not done[0]:
with open(log_file, "r") as f:
yield f.read()
time.sleep(1)
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = (
f"{config.python_cmd} extract_feature_print.py {RQuote(config.device)} "
f"{RQuote(leng)} {RQuote(idx)} {RQuote(n_g)} {log_dir} {RQuote(version19)}"
)
print(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
ps.append(p)
done = [False]
threading.Thread(target=if_done_multi, args=(done, ps)).start()
while not done[0]:
with open(log_file, "r") as f:
yield f.read()
time.sleep(1)
with open(log_file, "r") as f:
log = f.read()
print(log)
yield log
def change_sr2(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
f0_str = "f0" if if_f0_3 else ""
model_paths = {"G": "", "D": ""}
for model_type in model_paths:
file_path = f"pretrained{path_str}/{f0_str}{model_type}{sr2}.pth"
if os.access(file_path, os.F_OK):
model_paths[model_type] = file_path
else:
print(f"{file_path} doesn't exist, will not use pretrained model.")
return (model_paths["G"], model_paths["D"])
def change_version19(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
sr2 = "40k" if (sr2 == "32k" and version19 == "v1") else sr2
choices_update = {
"choices": ["40k", "48k"], "__type__": "update", "value": sr2
} if version19 == "v1" else {
"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
f0_str = "f0" if if_f0_3 else ""
model_paths = {"G": "", "D": ""}
for model_type in model_paths:
file_path = f"pretrained{path_str}/{f0_str}{model_type}{sr2}.pth"
if os.access(file_path, os.F_OK):
model_paths[model_type] = file_path
else:
print(f"{file_path} doesn't exist, will not use pretrained model.")
return (model_paths["G"], model_paths["D"], choices_update)
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
path_str = "" if version19 == "v1" else "_v2"
pth_format = "pretrained%s/f0%s%s.pth"
model_desc = { "G": "", "D": "" }
for model_type in model_desc:
file_path = pth_format % (path_str, model_type, sr2)
if os.access(file_path, os.F_OK):
model_desc[model_type] = file_path
else:
print(file_path, "doesn't exist, will not use pretrained model")
return (
{"visible": if_f0_3, "__type__": "update"},
model_desc["G"],
model_desc["D"],
{"visible": if_f0_3, "__type__": "update"}
)
global log_interval
def set_log_interval(exp_dir, batch_size12):
log_interval = 1
folder_path = os.path.join(exp_dir, "1_16k_wavs")
if os.path.isdir(folder_path):
wav_files_num = len(glob1(folder_path,"*.wav"))
if wav_files_num > 0:
log_interval = math.ceil(wav_files_num / batch_size12)
if log_interval > 1:
log_interval += 1
return log_interval
global PID, PROCESS
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
):
with open('csvdb/stop.csv', 'w+') as file: file.write("False")
log_dir = os.path.join(now_dir, "logs", exp_dir1)
os.makedirs(log_dir, exist_ok=True)
gt_wavs_dir = os.path.join(log_dir, "0_gt_wavs")
feature_dim = "256" if version19 == "v1" else "768"
feature_dir = os.path.join(log_dir, f"3_feature{feature_dim}")
log_interval = set_log_interval(log_dir, batch_size12)
required_dirs = [gt_wavs_dir, feature_dir]
if if_f0_3:
f0_dir = f"{log_dir}/2a_f0"
f0nsf_dir = f"{log_dir}/2b-f0nsf"
required_dirs.extend([f0_dir, f0nsf_dir])
names = set(name.split(".")[0] for directory in required_dirs for name in os.listdir(directory))
def generate_paths(name):
paths = [gt_wavs_dir, feature_dir]
if if_f0_3:
paths.extend([f0_dir, f0nsf_dir])
return '|'.join([path.replace('\\', '\\\\') + '/' + name + ('.wav.npy' if path in [f0_dir, f0nsf_dir] else '.wav' if path == gt_wavs_dir else '.npy') for path in paths])
opt = [f"{generate_paths(name)}|{spk_id5}" for name in names]
mute_dir = f"{now_dir}/logs/mute"
for _ in range(2):
mute_string = f"{mute_dir}/0_gt_wavs/mute{sr2}.wav|{mute_dir}/3_feature{feature_dim}/mute.npy"
if if_f0_3:
mute_string += f"|{mute_dir}/2a_f0/mute.wav.npy|{mute_dir}/2b-f0nsf/mute.wav.npy"
opt.append(mute_string+f"|{spk_id5}")
shuffle(opt)
with open(f"{log_dir}/filelist.txt", "w") as f:
f.write("\n".join(opt))
print("write filelist done")
print("use gpus:", gpus16)
if pretrained_G14 == "":
print("no pretrained Generator")
if pretrained_D15 == "":
print("no pretrained Discriminator")
G_train = f"-pg {pretrained_G14}" if pretrained_G14 else ""
D_train = f"-pd {pretrained_D15}" if pretrained_D15 else ""
cmd = (
f"{config.python_cmd} train_nsf_sim_cache_sid_load_pretrain.py -e {exp_dir1} -sr {sr2} -f0 {int(if_f0_3)} -bs {batch_size12}"
f" -g {gpus16 if gpus16 is not None else ''} -te {total_epoch11} -se {save_epoch10} {G_train} {D_train} -l {int(if_save_latest13)}"
f" -c {int(if_cache_gpu17)} -sw {int(if_save_every_weights18)} -v {version19} -li {log_interval}"
)
print(cmd)
global p
p = Popen(cmd, shell=True, cwd=now_dir)
global PID
PID = p.pid
p.wait()
return i18n("Training is done, check train.log"), {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}
def train_index(exp_dir1, version19):
exp_dir = os.path.join(now_dir, 'logs', exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dim = '256' if version19 == "v1" else '768'
feature_dir = os.path.join(exp_dir, f"3_feature{feature_dim}")
if not os.path.exists(feature_dir) or len(os.listdir(feature_dir)) == 0:
return "请先进行特征提取!"
npys = [np.load(os.path.join(feature_dir, name)) for name in sorted(os.listdir(feature_dir))]
big_npy = np.concatenate(npys, 0)
np.random.shuffle(big_npy)
infos = []
if big_npy.shape[0] > 2*10**5:
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
yield "\n".join(infos)
try:
big_npy = MiniBatchKMeans(n_clusters=10000, verbose=True, batch_size=256 * config.n_cpu,
compute_labels=False,init="random").fit(big_npy).cluster_centers_
except Exception as e:
infos.append(str(e))
yield "\n".join(infos)
np.save(os.path.join(exp_dir, "total_fea.npy"), big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(int(feature_dim), f"IVF{n_ivf},Flat")
index_ivf = faiss.extract_index_ivf(index)
index_ivf.nprobe = 1
index.train(big_npy)
index_file_base = f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index"
faiss.write_index(index, index_file_base)
infos.append("adding")
yield "\n".join(infos)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i:i + batch_size_add])
index_file_base = f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index"
faiss.write_index(index, index_file_base)
infos.append(f"Successful Index Construction,added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
yield "\n".join(infos)
def change_info_(ckpt_path):
train_log_path = os.path.join(os.path.dirname(ckpt_path), "train.log")
if not os.path.exists(train_log_path):
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
try:
with open(train_log_path, "r") as f:
info_line = next(f).strip()
info = eval(info_line.split("\t")[-1])
sr, f0 = info.get("sample_rate"), info.get("if_f0")
version = "v2" if info.get("version") == "v2" else "v1"
return sr, str(f0), version
except Exception as e:
print(f"Exception occurred: {str(e)}, Traceback: {traceback.format_exc()}")
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
def export_onnx(model_path, exported_path):
device = torch.device("cpu")
checkpoint = torch.load(model_path, map_location=device)
vec_channels = 256 if checkpoint.get("version", "v1") == "v1" else 768
test_inputs = {
"phone": torch.rand(1, 200, vec_channels),
"phone_lengths": torch.LongTensor([200]),
"pitch": torch.randint(5, 255, (1, 200)),
"pitchf": torch.rand(1, 200),
"ds": torch.zeros(1).long(),
"rnd": torch.rand(1, 192, 200)
}
checkpoint["config"][-3] = checkpoint["weight"]["emb_g.weight"].shape[0]
net_g = SynthesizerTrnMsNSFsidM(*checkpoint["config"], is_half=False, version=checkpoint.get("version", "v1"))
net_g.load_state_dict(checkpoint["weight"], strict=False)
net_g = net_g.to(device)
dynamic_axes = {"phone": [1], "pitch": [1], "pitchf": [1], "rnd": [2]}
torch.onnx.export(
net_g,
tuple(value.to(device) for value in test_inputs.values()),
exported_path,
dynamic_axes=dynamic_axes,
do_constant_folding=False,
opset_version=13,
verbose=False,
input_names=list(test_inputs.keys()),
output_names=["audio"],
)
return "Finished"
import scipy.io.wavfile as wavfile
cli_current_page = "HOME"
def cli_split_command(com):
exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)'
split_array = re.findall(exp, com)
split_array = [group[0] if group[0] else group[1] for group in split_array]
return split_array
execute_generator_function = lambda genObject: all(x is not None for x in genObject)
def cli_infer(com):
model_name, source_audio_path, output_file_name, feature_index_path, speaker_id, transposition, f0_method, crepe_hop_length, harvest_median_filter, resample, mix, feature_ratio, protection_amnt, _, f0_min, f0_max, do_formant = cli_split_command(com)[:17]
speaker_id, crepe_hop_length, harvest_median_filter, resample = map(int, [speaker_id, crepe_hop_length, harvest_median_filter, resample])
transposition, mix, feature_ratio, protection_amnt = map(float, [transposition, mix, feature_ratio, protection_amnt])
if do_formant.lower() == 'false':
Quefrency = 1.0
Timbre = 1.0
else:
Quefrency, Timbre = map(float, cli_split_command(com)[17:19])
rvc_globals.DoFormant = do_formant.lower() == 'true'
rvc_globals.Quefrency = Quefrency
rvc_globals.Timbre = Timbre
output_message = 'Infer-CLI:'
output_path = f'audio-others/{output_file_name}'
print(f"{output_message} Starting the inference...")
vc_data = get_vc(model_name, protection_amnt, protection_amnt)
print(vc_data)
print(f"{output_message} Performing inference...")
conversion_data = vc_single(
speaker_id,
source_audio_path,
source_audio_path,
transposition,
None, # f0 file support not implemented
f0_method,
feature_index_path,
feature_index_path,
feature_ratio,
harvest_median_filter,
resample,
mix,
protection_amnt,
crepe_hop_length,
f0_min=f0_min,
note_min=None,
f0_max=f0_max,
note_max=None
)
if "Success." in conversion_data[0]:
print(f"{output_message} Inference succeeded. Writing to {output_path}...")
wavfile.write(output_path, conversion_data[1][0], conversion_data[1][1])
print(f"{output_message} Finished! Saved output to {output_path}")
else:
print(f"{output_message} Inference failed. Here's the traceback: {conversion_data[0]}")
def cli_pre_process(com):
print("Pre-process: Starting...")
execute_generator_function(
preprocess_dataset(
*cli_split_command(com)[:3],
int(cli_split_command(com)[3])
)
)
print("Pre-process: Finished")
def cli_extract_feature(com):
model_name, gpus, num_processes, has_pitch_guidance, f0_method, crepe_hop_length, version = cli_split_command(com)
num_processes = int(num_processes)
has_pitch_guidance = bool(int(has_pitch_guidance))
crepe_hop_length = int(crepe_hop_length)
print(
f"Extract Feature Has Pitch: {has_pitch_guidance}"
f"Extract Feature Version: {version}"
"Feature Extraction: Starting..."
)
generator = extract_f0_feature(
gpus,
num_processes,
f0_method,
has_pitch_guidance,
model_name,
version,
crepe_hop_length
)
execute_generator_function(generator)
print("Feature Extraction: Finished")
def cli_train(com):
com = cli_split_command(com)
model_name = com[0]
sample_rate = com[1]
bool_flags = [bool(int(i)) for i in com[2:11]]
version = com[11]
pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/"
g_pretrained_path = f"{pretrained_base}f0G{sample_rate}.pth"
d_pretrained_path = f"{pretrained_base}f0D{sample_rate}.pth"
print("Train-CLI: Training...")
click_train(model_name, sample_rate, *bool_flags, g_pretrained_path, d_pretrained_path, version)
def cli_train_feature(com):
output_message = 'Train Feature Index-CLI'
print(f"{output_message}: Training... Please wait")
execute_generator_function(train_index(*cli_split_command(com)))
print(f"{output_message}: Done!")
def cli_extract_model(com):
extract_small_model_process = extract_small_model(*cli_split_command(com))
print(
"Extract Small Model: Success!"
if extract_small_model_process == "Success."
else f"{extract_small_model_process}\nExtract Small Model: Failed!"
)
def preset_apply(preset, qfer, tmbr):
if preset:
try:
with open(preset, 'r') as p:
content = p.read().splitlines()
qfer, tmbr = content[0], content[1]
formant_apply(qfer, tmbr)
except IndexError:
print("Error: File does not have enough lines to read 'qfer' and 'tmbr'")
except FileNotFoundError:
print("Error: File does not exist")
except Exception as e:
print("An unexpected error occurred", e)
return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
def print_page_details():
page_description = {
'HOME':
"\n go home : Takes you back to home with a navigation list."
"\n go infer : Takes you to inference command execution."
"\n go pre-process : Takes you to training step.1) pre-process command execution."
"\n go extract-feature : Takes you to training step.2) extract-feature command execution."
"\n go train : Takes you to training step.3) being or continue training command execution."
"\n go train-feature : Takes you to the train feature index command execution."
"\n go extract-model : Takes you to the extract small model command execution."
, 'INFER':
"\n arg 1) model name with .pth in ./weights: mi-test.pth"
"\n arg 2) source audio path: myFolder\\MySource.wav"
"\n arg 3) output file name to be placed in './audio-others': MyTest.wav"
"\n arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index"
"\n arg 5) speaker id: 0"
"\n arg 6) transposition: 0"
"\n arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny, rmvpe)"
"\n arg 8) crepe hop length: 160"
"\n arg 9) harvest median filter radius: 3 (0-7)"
"\n arg 10) post resample rate: 0"
"\n arg 11) mix volume envelope: 1"
"\n arg 12) feature index ratio: 0.78 (0-1)"
"\n arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.)"
"\n arg 14) Whether to formant shift the inference audio before conversion: False (if set to false, you can ignore setting the quefrency and timbre values for formanting)"
"\n arg 15)* Quefrency for formanting: 8.0 (no need to set if arg14 is False/false)"
"\n arg 16)* Timbre for formanting: 1.2 (no need to set if arg14 is False/false) \n"
"\nExample: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33 0.45 True 8.0 1.2"
, 'PRE-PROCESS':
"\n arg 1) Model folder name in ./logs: mi-test"
"\n arg 2) Trainset directory: mydataset (or) E:\\my-data-set"
"\n arg 3) Sample rate: 40k (32k, 40k, 48k)"
"\n arg 4) Number of CPU threads to use: 8 \n"
"\nExample: mi-test mydataset 40k 24"
, 'EXTRACT-FEATURE':
"\n arg 1) Model folder name in ./logs: mi-test"
"\n arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)"
"\n arg 3) Number of CPU threads to use: 8"
"\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
"\n arg 5) f0 Method: harvest (pm, harvest, dio, crepe)"
"\n arg 6) Crepe hop length: 128"
"\n arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n"
"\nExample: mi-test 0 24 1 harvest 128 v2"
, 'TRAIN':
"\n arg 1) Model folder name in ./logs: mi-test"
"\n arg 2) Sample rate: 40k (32k, 40k, 48k)"
"\n arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
"\n arg 4) speaker id: 0"
"\n arg 5) Save epoch iteration: 50"
"\n arg 6) Total epochs: 10000"
"\n arg 7) Batch size: 8"
"\n arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)"
"\n arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)"
"\n arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)"
"\n arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)"
"\n arg 12) Model architecture version: v2 (use either v1 or v2)\n"
"\nExample: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2"
, 'TRAIN-FEATURE':
"\n arg 1) Model folder name in ./logs: mi-test"
"\n arg 2) Model architecture version: v2 (use either v1 or v2)\n"
"\nExample: mi-test v2"
, 'EXTRACT-MODEL':
"\n arg 1) Model Path: logs/mi-test/G_168000.pth"
"\n arg 2) Model save name: MyModel"
"\n arg 3) Sample rate: 40k (32k, 40k, 48k)"
"\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
'\n arg 5) Model information: "My Model"'
"\n arg 6) Model architecture version: v2 (use either v1 or v2)\n"
'\nExample: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2'
}
print(page_description.get(cli_current_page, 'Invalid page'))
def change_page(page):
global cli_current_page
cli_current_page = page
return 0
def execute_command(com):
command_to_page = {
"go home": "HOME",
"go infer": "INFER",
"go pre-process": "PRE-PROCESS",
"go extract-feature": "EXTRACT-FEATURE",
"go train": "TRAIN",
"go train-feature": "TRAIN-FEATURE",
"go extract-model": "EXTRACT-MODEL",
}
page_to_function = {
"INFER": cli_infer,
"PRE-PROCESS": cli_pre_process,
"EXTRACT-FEATURE": cli_extract_feature,
"TRAIN": cli_train,
"TRAIN-FEATURE": cli_train_feature,
"EXTRACT-MODEL": cli_extract_model,
}
if com in command_to_page:
return change_page(command_to_page[com])
if com[:3] == "go ":
print(f"page '{com[3:]}' does not exist!")
return 0
if cli_current_page in page_to_function:
page_to_function[cli_current_page](com)
def cli_navigation_loop():
while True:
print(f"\nYou are currently in '{cli_current_page}':")
print_page_details()
print(f"{cli_current_page}: ", end="")
try: execute_command(input())
except Exception as e: print(f"An error occurred: {traceback.format_exc()}")
if(config.is_cli):
print(
"\n\nMangio-RVC-Fork v2 CLI App!\n"
"Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n"
)
cli_navigation_loop()
'''
def get_presets():
data = None
with open('../inference-presets.json', 'r') as file:
data = json.load(file)
preset_names = []
for preset in data['presets']:
preset_names.append(preset['name'])
return preset_names
'''
def switch_pitch_controls(f0method0):
is_visible = f0method0 != 'rmvpe'
if rvc_globals.NotesOrHertz:
return (
{"visible": False, "__type__": "update"},
{"visible": is_visible, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": is_visible, "__type__": "update"}
)
else:
return (
{"visible": is_visible, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": is_visible, "__type__": "update"},
{"visible": False, "__type__": "update"}
)
def match_index(sid0: str) -> tuple:
sid0strip = re.sub(r'\.pth|\.onnx$', '', sid0)
sid0name = os.path.split(sid0strip)[-1] # Extract only the name, not the directory
# Check if the sid0strip has the specific ending format _eXXX_sXXX
if re.match(r'.+_e\d+_s\d+$', sid0name):
base_model_name = sid0name.rsplit('_', 2)[0]
else:
base_model_name = sid0name
sid_directory = os.path.join(index_root, base_model_name)
directories_to_search = [sid_directory] if os.path.exists(sid_directory) else []
directories_to_search.append(index_root)
matching_index_files = []
for directory in directories_to_search:
for filename in os.listdir(directory):
if filename.endswith('.index') and 'trained' not in filename:
# Condition to match the name
name_match = any(name.lower() in filename.lower() for name in [sid0name, base_model_name])
# If in the specific directory, it's automatically a match
folder_match = directory == sid_directory
if name_match or folder_match:
index_path = os.path.join(directory, filename)
if index_path in indexes_list:
matching_index_files.append((index_path, os.path.getsize(index_path), ' ' not in filename))
if matching_index_files:
# Sort by favoring files without spaces and by size (largest size first)
matching_index_files.sort(key=lambda x: (-x[2], -x[1]))
best_match_index_path = matching_index_files[0][0]
return best_match_index_path, best_match_index_path
return '', ''
def stoptraining(mim):
if mim:
try:
with open('csvdb/stop.csv', 'w+') as file: file.write("True")
os.kill(PID, SIGTERM)
except Exception as e:
print(f"Couldn't click due to {e}")
return (
{"visible": True , "__type__": "update"},
{"visible": False, "__type__": "update"})
return (
{"visible": False, "__type__": "update"},
{"visible": True , "__type__": "update"})
weights_dir = 'weights/'
def note_to_hz(note_name):
SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2}
pitch_class, octave = note_name[:-1], int(note_name[-1])
semitone = SEMITONES[pitch_class]
note_number = 12 * (octave - 4) + semitone
frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number
return frequency
def save_to_wav(record_button):
if record_button is None:
pass
else:
path_to_file=record_button
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
new_path='./audios/'+new_name
shutil.move(path_to_file,new_path)
return new_name
def save_to_wav2_edited(dropbox):
if dropbox is None:
pass
else:
file_path = dropbox.name
target_path = os.path.join('audios', os.path.basename(file_path))
if os.path.exists(target_path):
os.remove(target_path)
print('Replacing old dropdown file...')
shutil.move(file_path, target_path)
return
def save_to_wav2(dropbox):
file_path = dropbox.name
target_path = os.path.join('audios', os.path.basename(file_path))
if os.path.exists(target_path):
os.remove(target_path)
print('Replacing old dropdown file...')
shutil.move(file_path, target_path)
return target_path
def change_choices2():
return ""
def GradioSetup(UTheme=gr.themes.Soft()):
default_weight = names[0] if names else ''
with gr.Blocks(theme='JohnSmith9982/small_and_pretty', title="Applio") as app:
gr.HTML("<h1> 🍏 Applio (Mangio-RVC-Fork) </h1>")
with gr.Tabs():
with gr.TabItem(i18n("Model Inference")):
with gr.Row():
sid0 = gr.Dropdown(label=i18n("Inferencing voice:"), choices=sorted(names), value=default_weight)
refresh_button = gr.Button(i18n("Refresh voice list, index path and audio files"), variant="primary")
clean_button = gr.Button(i18n("Unload voice to save GPU memory"), variant="primary")
clean_button.click(fn=lambda: ({"value": "", "__type__": "update"}), inputs=[], outputs=[sid0])
with gr.TabItem(i18n("Single")):
with gr.Row():
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("Select Speaker/Singer ID:"),
value=0,
visible=False,
interactive=True,
)
with gr.Group():
with gr.Row():
with gr.Column(): # First column for audio-related inputs
dropbox = gr.File(label=i18n("Drag your audio here:"))
record_button=gr.Audio(source="microphone", label=i18n("Or record an audio:"), type="filepath")
input_audio0 = gr.Textbox(
label=i18n("Manual path to the audio file to be processed"),
value=os.path.join(now_dir, "audios", "someguy.mp3"),
visible=False
)
input_audio1 = gr.Dropdown(
label=i18n("Auto detect audio path and select from the dropdown:"),
choices=sorted(audio_paths),
value='',
interactive=True,
)
input_audio1.select(fn=lambda:'',inputs=[],outputs=[input_audio0])
input_audio0.input(fn=lambda:'',inputs=[],outputs=[input_audio1])
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio1])
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0])
record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio1])
best_match_index_path1, _ = match_index(sid0.value) # Get initial index from default sid0 (first voice model in list)
with gr.Column(): # Second column for pitch shift and other options
file_index2 = gr.Dropdown(
label=i18n("Auto-detect index path and select from the dropdown:"),
choices=get_indexes(),
value=best_match_index_path1,
interactive=True,
allow_custom_value=True,
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Search feature ratio:"),
value=0.75,
interactive=True,
)
refresh_button.click(
fn=change_choices, inputs=[], outputs=[sid0, file_index2, input_audio1]
)
with gr.Column():
vc_transform0 = gr.Number(
label=i18n("Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):"), value=0
)
# Create a checkbox for advanced settings
advanced_settings_checkbox = gr.Checkbox(
value=False,
label=i18n("Advanced Settings"),
interactive=True,
)
# Advanced settings container
with gr.Column(visible=False) as advanced_settings: # Initially hidden
with gr.Row(label = i18n("Advanced Settings"), open = False):
with gr.Column():
f0method0 = gr.Radio(
label=i18n(
"Select the pitch extraction algorithm:"
),
choices=["pm", "harvest", "dio", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe", "rmvpe_onnx", "rmvpe+"],
value="rmvpe+",
interactive=True,
)
f0_autotune = gr.Checkbox(
label="Enable autotune",
interactive=True
)
crepe_hop_length = gr.Slider(
minimum=1,
maximum=512,
step=1,
label=i18n("Mangio-Crepe Hop Length (Only applies to mangio-crepe): Hop length refers to the time it takes for the speaker to jump to a dramatic pitch. Lower hop lengths take more time to infer but are more pitch accurate."),
value=120,
interactive=True,
visible=False,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n("If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness."),
value=3,
step=1,
interactive=True,
)
minpitch_slider = gr.Slider(
label = i18n("Min pitch:"),
info = i18n("Specify minimal pitch for inference [HZ]"),
step = 0.1,
minimum = 1,
scale = 0,
value = 50,
maximum = 16000,
interactive = True,
visible = (not rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'),
)
minpitch_txtbox = gr.Textbox(
label = i18n("Min pitch:"),
info = i18n("Specify minimal pitch for inference [NOTE][OCTAVE]"),
placeholder = "C5",
visible = (rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'),
interactive = True,
)
maxpitch_slider = gr.Slider(
label = i18n("Max pitch:"),
info = i18n("Specify max pitch for inference [HZ]"),
step = 0.1,
minimum = 1,
scale = 0,
value = 1100,
maximum = 16000,
interactive = True,
visible = (not rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'),
)
maxpitch_txtbox = gr.Textbox(
label = i18n("Max pitch:"),
info = i18n("Specify max pitch for inference [NOTE][OCTAVE]"),
placeholder = "C6",
visible = (rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'),
interactive = True,
)
with gr.Column():
file_index1 = gr.Textbox(
label=i18n("Feature search database file path:"),
value="",
interactive=True,
)
with gr.Accordion(label = i18n("Custom f0 [Root pitch] File"), open = False):
f0_file = gr.File(label=i18n("F0 curve file (optional). One pitch per line. Replaces the default F0 and pitch modulation:"))
f0method0.change(
fn=lambda radio: (
{
"visible": radio in ['mangio-crepe', 'mangio-crepe-tiny'],
"__type__": "update"
}
),
inputs=[f0method0],
outputs=[crepe_hop_length]
)
f0method0.change(
fn=switch_pitch_controls,
inputs=[f0method0],
outputs=[minpitch_slider, minpitch_txtbox,
maxpitch_slider, maxpitch_txtbox]
)
with gr.Column():
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used:"),
value=0.25,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:"
),
value=0.33,
step=0.01,
interactive=True,
)
formanting = gr.Checkbox(
value=bool(DoFormant),
label=i18n("Formant shift inference audio"),
info=i18n("Used for male to female and vice-versa conversions"),
interactive=True,
visible=True,
)
formant_preset = gr.Dropdown(
value='',
choices=get_fshift_presets(),
label=i18n("Browse presets for formanting"),
info=i18n("Presets are located in formantshiftcfg/ folder"),
visible=bool(DoFormant),
)
formant_refresh_button = gr.Button(
value='\U0001f504',
visible=bool(DoFormant),
variant='primary',
)
qfrency = gr.Slider(
value=Quefrency,
info=i18n("Default value is 1.0"),
label=i18n("Quefrency for formant shifting"),
minimum=0.0,
maximum=16.0,
step=0.1,
visible=bool(DoFormant),
interactive=True,
)
tmbre = gr.Slider(
value=Timbre,
info=i18n("Default value is 1.0"),
label=i18n("Timbre for formant shifting"),
minimum=0.0,
maximum=16.0,
step=0.1,
visible=bool(DoFormant),
interactive=True,
)
frmntbut = gr.Button(i18n("Apply"), variant="primary", visible=bool(DoFormant))
formant_preset.change(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre])
formanting.change(fn=formant_enabled,inputs=[formanting,qfrency,tmbre],outputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button])
frmntbut.click(fn=formant_apply,inputs=[qfrency, tmbre], outputs=[qfrency, tmbre])
formant_refresh_button.click(fn=update_fshift_presets,inputs=[formant_preset, qfrency, tmbre],outputs=[formant_preset, qfrency, tmbre])
# Function to toggle advanced settings
def toggle_advanced_settings(checkbox):
return {"visible": checkbox, "__type__": "update"}
# Attach the change event
advanced_settings_checkbox.change(
fn=toggle_advanced_settings,
inputs=[advanced_settings_checkbox],
outputs=[advanced_settings]
)
but0 = gr.Button(i18n("Convert"), variant="primary").style(full_width=True)
with gr.Row(): # Defines output info + output audio download after conversion
vc_output1 = gr.Textbox(label=i18n("Output information:"))
vc_output2 = gr.Audio(label=i18n("Export audio (click on the three dots in the lower right corner to download)"))
with gr.Group(): # I think this defines the big convert button
with gr.Row():
but0.click(
vc_single,
[
spk_item,
input_audio0,
input_audio1,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
crepe_hop_length,
minpitch_slider, minpitch_txtbox,
maxpitch_slider, maxpitch_txtbox,
f0_autotune
],
[vc_output1, vc_output2],
)
with gr.TabItem(i18n("Batch")): # Dont Change
with gr.Group(): # Markdown explanation of batch inference
gr.Markdown(
value=i18n("Batch conversion. Enter the folder containing the audio files to be converted or upload multiple audio files. The converted audio will be output in the specified folder (default: 'opt').")
)
with gr.Row():
with gr.Column():
vc_transform1 = gr.Number(
label=i18n("Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):"), value=0
)
opt_input = gr.Textbox(label=i18n("Specify output folder:"), value="opt")
with gr.Column():
file_index4 = gr.Dropdown(
label=i18n("Auto-detect index path and select from the dropdown:"),
choices=get_indexes(),
value=best_match_index_path1,
interactive=True,
)
sid0.select(fn=match_index, inputs=[sid0], outputs=[file_index2, file_index4])
refresh_button.click(
fn=lambda: change_choices()[1],
inputs=[],
outputs=file_index4,
)
index_rate2 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Search feature ratio:"),
value=0.75,
interactive=True,
)
with gr.Row():
dir_input = gr.Textbox(
label=i18n("Enter the path of the audio folder to be processed (copy it from the address bar of the file manager):"),
value=os.path.join(now_dir, "audios"),
)
inputs = gr.File(
file_count="multiple", label=i18n("You can also input audio files in batches. Choose one of the two options. Priority is given to reading from the folder.")
)
with gr.Row():
with gr.Column():
# Create a checkbox for advanced batch settings
advanced_settings_batch_checkbox = gr.Checkbox(
value=False,
label=i18n("Advanced Settings"),
interactive=True,
)
# Advanced batch settings container
with gr.Row(visible=False) as advanced_settings_batch: # Initially hidden
with gr.Row(label = i18n("Advanced Settings"), open = False):
with gr.Column():
file_index3 = gr.Textbox(
label=i18n("Feature search database file path:"),
value="",
interactive=True,
)
f0method1 = gr.Radio(
label=i18n(
"Select the pitch extraction algorithm:"
),
choices=["pm", "harvest", "crepe", "rmvpe"],
value="rmvpe",
interactive=True,
)
filter_radius1 = gr.Slider(
minimum=0,
maximum=7,
label=i18n("If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness."),
value=3,
step=1,
interactive=True,
)
with gr.Row():
format1 = gr.Radio(
label=i18n("Export file format"),
choices=["wav", "flac", "mp3", "m4a"],
value="wav",
interactive=True,
)
with gr.Column():
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used:"),
value=1,
interactive=True,
)
protect1 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:"
),
value=0.33,
step=0.01,
interactive=True,
)
vc_output3 = gr.Textbox(label=i18n("Output information:"))
but1 = gr.Button(i18n("Convert"), variant="primary")
but1.click(
vc_multi,
[
spk_item,
dir_input,
opt_input,
inputs,
vc_transform1,
f0method1,
file_index3,
file_index4,
index_rate2,
filter_radius1,
resample_sr1,
rms_mix_rate1,
protect1,
format1,
crepe_hop_length,
minpitch_slider if (not rvc_globals.NotesOrHertz) else minpitch_txtbox,
maxpitch_slider if (not rvc_globals.NotesOrHertz) else maxpitch_txtbox,
],
[vc_output3],
)
sid0.change(
fn=get_vc,
inputs=[sid0, protect0, protect1],
outputs=[spk_item, protect0, protect1],
)
spk_item, protect0, protect1 = get_vc(sid0.value, protect0, protect1)
# Function to toggle advanced settings
def toggle_advanced_settings_batch(checkbox):
return {"visible": checkbox, "__type__": "update"}
# Attach the change event
advanced_settings_batch_checkbox.change(
fn=toggle_advanced_settings_batch,
inputs=[advanced_settings_batch_checkbox],
outputs=[advanced_settings_batch]
)
with gr.TabItem(i18n("Train")):
with gr.Accordion(label=i18n("Step 1: Processing data")):
with gr.Row():
exp_dir1 = gr.Textbox(label=i18n("Enter the model name:"), value=i18n("Model_Name"))
sr2 = gr.Radio(
label=i18n("Target sample rate:"),
choices=["40k", "48k", "32k"],
value="40k",
interactive=True,
)
if_f0_3 = gr.Checkbox(
label=i18n("Whether the model has pitch guidance."),
value=True,
interactive=True,
)
version19 = gr.Radio(
label=i18n("Version:"),
choices=["v1", "v2"],
value="v2",
interactive=True,
visible=True,
)
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label=i18n("Number of CPU processes:"),
value=int(np.ceil(config.n_cpu / 1.5)),
interactive=True,
)
with gr.Group():
with gr.Accordion(label=i18n("Step 2: Skipping pitch extraction")):
with gr.Row():
# trainset_dir4 = gr.Textbox(
# label=i18n("Enter the path of the training folder:"), value=os.path.join(now_dir, datasets_root)
# )
with gr.Column():
trainset_dir4 = gr.Dropdown(choices=sorted(datasets), label=i18n("Select your dataset:"), value=get_dataset())
btn_update_dataset_list = gr.Button(i18n("Update list."), variant="primary")
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label=i18n("Specify the model ID:"),
value=0,
interactive=True,
)
btn_update_dataset_list.click(
easy_infer.update_dataset_list, [spk_id5], trainset_dir4
)
but1 = gr.Button(i18n("Process data"), variant="primary")
info1 = gr.Textbox(label=i18n("Output information:"), value="")
but1.click(
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
)
with gr.Group():
with gr.Accordion(label=i18n("Step 3: Extracting features")):
with gr.Row():
with gr.Column():
gpus6 = gr.Textbox(
label=i18n("Provide the GPU index(es) separated by '-', like 0-1-2 for using GPUs 0, 1, and 2:"),
value=gpus,
interactive=True,
)
gr.Textbox(label=i18n("GPU Information:"), value=gpu_info)
with gr.Column():
f0method8 = gr.Radio(
label=i18n(
"Select the pitch extraction algorithm:"
),
choices=["pm", "harvest", "dio", "crepe", "mangio-crepe", "rmvpe"],
# [ MANGIO ]: Fork feature: Crepe on f0 extraction for training.
value="rmvpe",
interactive=True,
)
extraction_crepe_hop_length = gr.Slider(
minimum=1,
maximum=512,
step=1,
label=i18n("Mangio-Crepe Hop Length (Only applies to mangio-crepe): Hop length refers to the time it takes for the speaker to jump to a dramatic pitch. Lower hop lengths take more time to infer but are more pitch accurate."),
value=64,
interactive=True,
visible=False,
)
f0method8.change(
fn=lambda radio: (
{
"visible": radio in ['mangio-crepe', 'mangio-crepe-tiny'],
"__type__": "update"
}
),
inputs=[f0method8],
outputs=[extraction_crepe_hop_length]
)
but2 = gr.Button(i18n("Feature extraction"), variant="primary")
info2 = gr.Textbox(label=i18n("Output information:"), value="", max_lines=8, interactive=False)
but2.click(
extract_f0_feature,
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
[info2],
)
with gr.Group():
with gr.Row():
with gr.Accordion(label=i18n("Step 4: Model training started")):
with gr.Row():
save_epoch10 = gr.Slider(
minimum=1,
maximum=100,
step=1,
label=i18n("Save frequency:"),
value=10,
interactive=True,
visible=True,
)
total_epoch11 = gr.Slider(
minimum=1,
maximum=10000,
step=2,
label=i18n("Training epochs:"),
value=750,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=50,
step=1,
label=i18n("Batch size per GPU:"),
value=default_batch_size,
#value=20,
interactive=True,
)
with gr.Row():
if_save_latest13 = gr.Checkbox(
label=i18n("Whether to save only the latest .ckpt file to save hard drive space"),
value=True,
interactive=True,
)
if_cache_gpu17 = gr.Checkbox(
label=i18n("Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training"),
value=False,
interactive=True,
)
if_save_every_weights18 = gr.Checkbox(
label=i18n("Save a small final model to the 'weights' folder at each save point"),
value=True,
interactive=True,
)
with gr.Row():
pretrained_G14 = gr.Textbox(
lines=4,
label=i18n("Load pre-trained base model G path:"),
value="pretrained_v2/f0G40k.pth",
interactive=True,
)
pretrained_D15 = gr.Textbox(
lines=4,
label=i18n("Load pre-trained base model D path:"),
value="pretrained_v2/f0D40k.pth",
interactive=True,
)
gpus16 = gr.Textbox(
label=i18n("Provide the GPU index(es) separated by '-', like 0-1-2 for using GPUs 0, 1, and 2:"),
value=gpus,
interactive=True,
)
sr2.change(
change_sr2,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15],
)
version19.change(
change_version19,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15, sr2],
)
if_f0_3.change(
fn=change_f0,
inputs=[if_f0_3, sr2, version19],
outputs=[f0method8, pretrained_G14, pretrained_D15],
)
if_f0_3.change(fn=lambda radio: (
{
"visible": radio in ['mangio-crepe', 'mangio-crepe-tiny'],
"__type__": "update"
}
), inputs=[f0method8], outputs=[extraction_crepe_hop_length])
butstop = gr.Button(i18n("Stop training"),
variant='primary',
visible=False,
)
but3 = gr.Button(i18n("Train model"), variant="primary", visible=True)
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[but3, butstop])
with gr.Column():
info3 = gr.Textbox(label=i18n("Output information:"), value="", max_lines=4)
save_action = gr.Dropdown(label=i18n("Save type"), choices=[i18n("Save all"),i18n("Save D and G"),i18n("Save voice")], value=i18n("Choose the method"), interactive=True)
but7 = gr.Button(i18n("Save model"), variant="primary")
but4 = gr.Button(i18n("Train feature index"), variant="primary")
if_save_every_weights18.change(
fn=lambda if_save_every_weights: (
{
"visible": if_save_every_weights,
"__type__": "update"
}
),
inputs=[if_save_every_weights18],
outputs=[save_epoch10]
)
but3.click(
click_train,
[
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
[info3, butstop, but3],
)
but4.click(train_index, [exp_dir1, version19], info3)
but7.click(easy_infer.save_model, [exp_dir1, save_action], info3)
with gr.Group():
with gr.Row():
with gr.Accordion(label=i18n("Step 5: Export lowest points on a graph of the model")):
lowestval_weight_dir = gr.Textbox(visible=False)
ds = gr.Textbox(visible=False)
weights_dir1 = gr.Textbox(visible=False, value=weights_dir)
with gr.Row():
amntlastmdls = gr.Slider(
minimum=1,
maximum=25,
label=i18n('How many lowest points to save:'),
value=3,
step=1,
interactive=True,
)
lpexport = gr.Button(
value=i18n('Export lowest points of a model'),
variant='primary',
)
lw_mdls = gr.File(
file_count="multiple",
label=i18n("Output models:"),
interactive=False,
) #####
with gr.Row():
infolpex = gr.Textbox(label=i18n("Output information:"), value="", max_lines=10)
mdlbl = gr.Dataframe(label=i18n('Stats of selected models:'), datatype='number', type='pandas')
lpexport.click(
lambda model_name: os.path.join("logs", model_name, "lowestvals"),
inputs=[exp_dir1],
outputs=[lowestval_weight_dir]
)
lpexport.click(fn=tensorlowest.main, inputs=[exp_dir1, save_epoch10, amntlastmdls], outputs=[ds])
ds.change(
fn=tensorlowest.selectweights,
inputs=[exp_dir1, ds, weights_dir1, lowestval_weight_dir],
outputs=[infolpex, lw_mdls, mdlbl],
)
with gr.TabItem(i18n("UVR5")): # UVR section
with gr.Group():
with gr.Row():
with gr.Column():
model_select = gr.Radio(
label=i18n("Model Architecture:"),
choices=["VR", "MDX"],
value="VR",
interactive=True,
)
dir_wav_input = gr.Textbox(
label=i18n("Enter the path of the audio folder to be processed:"),
value=os.path.join(now_dir, "audios")
)
wav_inputs = gr.File(
file_count="multiple", label=i18n("You can also input audio files in batches. Choose one of the two options. Priority is given to reading from the folder.")
)
with gr.Column():
model_choose = gr.Dropdown(label=i18n("Model:"), choices=uvr5_names)
agg = gr.Slider(
minimum=0,
maximum=20,
step=1,
label="Vocal Extraction Aggressive",
value=10,
interactive=True,
visible=False,
)
opt_vocal_root = gr.Textbox(
label=i18n("Specify the output folder for vocals:"), value="opt"
)
opt_ins_root = gr.Textbox(
label=i18n("Specify the output folder for accompaniment:"), value="opt"
)
format0 = gr.Radio(
label=i18n("Export file format:"),
choices=["wav", "flac", "mp3", "m4a"],
value="flac",
interactive=True,
)
model_select.change(
fn=update_model_choices,
inputs=model_select,
outputs=model_choose,
)
but2 = gr.Button(i18n("Convert"), variant="primary")
vc_output4 = gr.Textbox(label=i18n("Output information:"))
#wav_inputs.upload(fn=save_to_wav2_edited, inputs=[wav_inputs], outputs=[])
but2.click(
uvr,
[
model_choose,
dir_wav_input,
opt_vocal_root,
wav_inputs,
opt_ins_root,
agg,
format0,
model_select
],
[vc_output4],
)
with gr.TabItem(i18n("Resources")):
easy_infer.download_model()
easy_infer.download_backup()
easy_infer.download_dataset(trainset_dir4)
easy_infer.download_audio()
easy_infer.youtube_separator()
with gr.TabItem(i18n("Extra")):
gr.Markdown(
value=i18n("This section contains some extra utilities that often may be in experimental phases")
)
with gr.TabItem(i18n("Merge Audios")):
with gr.Group():
gr.Markdown(
value="## " + i18n("Merge your generated audios with the instrumental")
)
gr.Markdown(value="",scale="-0.5",visible=True)
gr.Markdown(value="",scale="-0.5",visible=True)
with gr.Row():
with gr.Column():
dropbox = gr.File(label=i18n("Drag your audio here:"))
gr.Markdown(value=i18n("### Instrumental settings:"))
input_audio1 = gr.Dropdown(
label=i18n("Choose your instrumental:"),
choices=sorted(audio_others_paths),
value='',
interactive=True,
)
input_audio1_scale = gr.Slider(
minimum=0,
maximum=10,
label=i18n("Volume of the instrumental audio:"),
value=1.00,
interactive=True,
)
gr.Markdown(value=i18n("### Audio settings:"))
input_audio3 = gr.Dropdown(
label=i18n("Select the generated audio"),
choices=sorted(audio_paths),
value='',
interactive=True,
)
with gr.Row():
input_audio3_scale = gr.Slider(
minimum=0,
maximum=10,
label=i18n("Volume of the generated audio:"),
value=1.00,
interactive=True,
)
gr.Markdown(value=i18n("### Add the effects:"))
reverb_ = gr.Checkbox(
label=i18n("Reverb"),
value=False,
interactive=True,
)
compressor_ = gr.Checkbox(
label=i18n("Compressor"),
value=False,
interactive=True,
)
noise_gate_ = gr.Checkbox(
label=i18n("Noise Gate"),
value=False,
interactive=True,
)
butnone = gr.Button(i18n("Merge"), variant="primary").style(full_width=True)
vc_output1 = gr.Textbox(label=i18n("Output information:"))
vc_output2 = gr.Audio(label=i18n("Export audio (click on the three dots in the lower right corner to download)"), type='filepath')
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio1])
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio1])
refresh_button.click(
fn=lambda: change_choices3(),
inputs=[],
outputs=[input_audio1, input_audio3],
)
butnone.click(
fn=audio_combined,
inputs=[input_audio1, input_audio3,input_audio1_scale,input_audio3_scale,reverb_,compressor_,noise_gate_],
outputs=[vc_output1, vc_output2]
)
with gr.TabItem(i18n("Processing")):
with gr.Group():
with gr.Accordion(label=i18n("Model fusion, can be used to test timbre fusion")):
with gr.Row():
with gr.Column():
name_to_save0 = gr.Textbox(
label=i18n("Name:"),
value="",
max_lines=1,
interactive=True,
placeholder=i18n("Name for saving")
)
alpha_a = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Weight for Model A:"),
value=0.5,
interactive=True,
)
if_f0_ = gr.Checkbox(
label=i18n("Whether the model has pitch guidance."),
value=True,
interactive=True,
)
version_2 = gr.Radio(
label=i18n("Model architecture version:"),
choices=["v1", "v2"],
value="v2",
interactive=True,
)
sr_ = gr.Radio(
label=i18n("Target sample rate:"),
choices=["40k", "48k"],
value="40k",
interactive=True,
)
with gr.Column():
ckpt_a = gr.Textbox(label=i18n("Path to Model A:"), value="", interactive=True, placeholder=i18n("Path to model"))
ckpt_b = gr.Textbox(label=i18n("Path to Model B:"), value="", interactive=True, placeholder=i18n("Path to model"))
info__ = gr.Textbox(
label=i18n("Model information to be placed:"), value="", max_lines=8, interactive=True, placeholder=i18n("Model information to be placed")
)
info4 = gr.Textbox(label=i18n("Output information:"), value="", max_lines=8)
but6 = gr.Button(i18n("Fusion"), variant="primary")
but6.click(
merge,
[
ckpt_a,
ckpt_b,
alpha_a,
sr_,
if_f0_,
info__,
name_to_save0,
version_2,
],
info4,
) # def merge(path1,path2,alpha1,sr,f0,info):
with gr.Group():
with gr.Accordion(label=i18n("Modify model information")):
with gr.Row(): ######
with gr.Column():
ckpt_path0 = gr.Textbox(
label=i18n("Path to Model:"), value="", interactive=True, placeholder=i18n("Path to model")
)
info_ = gr.Textbox(
label=i18n("Model information to be modified:"), value="", max_lines=8, interactive=True, placeholder=i18n("Model information to be placed")
)
with gr.Column():
name_to_save1 = gr.Textbox(
label=i18n("Save file name:"),
placeholder=i18n("Name for saving"),
value="",
max_lines=8,
interactive=True,
)
info5 = gr.Textbox(label=i18n("Output information:"), value="", max_lines=8)
but7 = gr.Button(i18n("Modify"), variant="primary")
but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5)
with gr.Group():
with gr.Accordion(label=i18n("View model information")):
with gr.Row():
with gr.Column():
ckpt_path1 = gr.Textbox(
label=i18n("Path to Model:"), value="", interactive=True, placeholder=i18n("Path to model")
)
info6 = gr.Textbox(label=i18n("Output information:"), value="", max_lines=8)
but8 = gr.Button(i18n("View"), variant="primary")
but8.click(show_info, [ckpt_path1], info6)
with gr.Group():
with gr.Accordion(label=i18n("Model extraction")):
with gr.Row():
with gr.Column():
save_name = gr.Textbox(
label=i18n("Name:"), value="", interactive=True, placeholder=i18n("Name for saving")
)
if_f0__ = gr.Checkbox(
label=i18n("Whether the model has pitch guidance."),
value=True,
interactive=True,
)
version_1 = gr.Radio(
label=i18n("Model architecture version:"),
choices=["v1", "v2"],
value="v2",
interactive=True,
)
sr__ = gr.Radio(
label=i18n("Target sample rate:"),
choices=["32k", "40k", "48k"],
value="40k",
interactive=True,
)
with gr.Column():
ckpt_path2 = gr.Textbox(
label=i18n("Path to Model:"),
placeholder=i18n("Path to model"),
interactive=True,
)
info___ = gr.Textbox(
label=i18n("Model information to be placed:"), value="", max_lines=8, interactive=True, placeholder=i18n("Model information to be placed")
)
info7 = gr.Textbox(label=i18n("Output information:"), value="", max_lines=8)
with gr.Row():
but9 = gr.Button(i18n("Extract"), variant="primary")
ckpt_path2.change(
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
)
but9.click(
extract_small_model,
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
info7,
)
with gr.TabItem(i18n("Settings")):
with gr.Row():
gr.Markdown(value=
i18n("Pitch settings")
)
noteshertz = gr.Checkbox(
label = i18n("Whether to use note names instead of their hertz value. E.G. [C5, D6] instead of [523.25, 1174.66]Hz"),
value = rvc_globals.NotesOrHertz,
interactive = True,
)
noteshertz.change(fn=lambda nhertz: rvc_globals.__setattr__('NotesOrHertz', nhertz), inputs=[noteshertz], outputs=[])
noteshertz.change(
fn=switch_pitch_controls,
inputs=[f0method0],
outputs=[
minpitch_slider, minpitch_txtbox,
maxpitch_slider, maxpitch_txtbox,]
)
return app
def GradioRun(app):
share_gradio_link = config.iscolab or config.paperspace
concurrency_count = 511
max_size = 1022
if (
config.iscolab or config.paperspace
):
app.queue(concurrency_count=concurrency_count, max_size=max_size).launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
quiet=True,
favicon_path="./images/icon.png",
share=share_gradio_link,
)
else:
app.queue(concurrency_count=concurrency_count, max_size=max_size).launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
quiet=True,
favicon_path=".\images\icon.png",
share=share_gradio_link,
)
if __name__ == "__main__":
if os.name == 'nt':
print(i18n("Any ConnectionResetErrors post-conversion are irrelevant and purely visual; they can be ignored.\n"))
app = GradioSetup(UTheme=config.grtheme)
GradioRun(app) |