File size: 1,762 Bytes
925746a
 
 
 
 
 
 
 
 
 
 
 
 
 
30c9f12
925746a
 
 
 
 
 
 
30c9f12
925746a
b8f059f
 
 
 
 
925746a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ecd16
 
925746a
 
 
30c9f12
 
925746a
 
 
 
 
b8f059f
 
925746a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ft-ms-layoutlmv3-funsd-layoutlmv3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-ms-layoutlmv3-funsd-layoutlmv3

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the aisuko/funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5755
- Precision: 0.8422
- Recall: 0.8803
- F1: 0.8608
- Accuracy: 0.8324

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 10.0  | 100  | 0.6104          | 0.8080    | 0.8614 | 0.8339 | 0.8262   |
| No log        | 20.0  | 200  | 0.5755          | 0.8422    | 0.8803 | 0.8608 | 0.8324   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0