File size: 6,381 Bytes
db792f0 a79bfd9 db792f0 7aaed1e 9b80327 e3491e3 7aaed1e 9b80327 7aaed1e 9b80327 7aaed1e 9b80327 7aaed1e 9b80327 7aaed1e 6c9ccc1 7aaed1e 11cc427 7aaed1e cda55d6 7aaed1e 9b98e50 9b80327 7aaed1e 11cc427 7aaed1e b426412 55733e6 7aaed1e 9b80327 7aaed1e b426412 7aaed1e 11cc427 7aaed1e b426412 7aaed1e ffbb13b 7aaed1e c0674bb 7aaed1e 610d6e8 f9bb33e 3496382 0c31f3f 3496382 a79bfd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
license: mit
language:
- en
- zh
- id
- ms
- th
- vi
- fil
- ta
- my
- km
- lo
---
# SEA-LION
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
The size of the models range from 3 billion to 7 billion parameters.
This is the card for the SEA-LION 7B base model.
SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.
## Model Details
### Model Description
The SEA-LION model is a significant leap forward in the field of Natural Language Processing,
specifically trained to understand the SEA regional context.
SEA-LION is built on the robust MPT architecture and has a vocabulary size of 256K.
For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.
The training data for SEA-LION encompasses 980B tokens.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
- **License:** MIT License
### Performance Benchmarks
SEA-LION has an average performance on general tasks in English (as measured by Hugging Face's LLM Leaderboard):
| Model | ARC | HellaSwag | MMLU | TruthfulQA | Average |
|-------------|:-----:|:---------:|:-----:|:----------:|:-------:|
| SEA-LION 7B | 39.93 | 68.51 | 26.87 | 35.09 | 42.60 |
## Training Details
### Data
SEA-LION was trained on 980B tokens of the following data:
| Data Source | Unique Tokens | Multiplier | Total Tokens | Percentage |
|---------------------------|:-------------:|:----------:|:------------:|:----------:|
| RefinedWeb - English | 571.3B | 1 | 571.3B | 58.20% |
| mC4 - Chinese | 91.2B | 1 | 91.2B | 9.29% |
| mC4 - Indonesian | 3.68B | 4 | 14.7B | 1.50% |
| mC4 - Malay | 0.72B | 4 | 2.9B | 0.29% |
| mC4 - Filipino | 1.32B | 4 | 5.3B | 0.54% |
| mC4 - Burmese | 1.2B | 4 | 4.9B | 0.49% |
| mC4 - Vietnamese | 63.4B | 1 | 63.4B | 6.46% |
| mC4 - Thai | 5.8B | 2 | 11.6B | 1.18% |
| WangChanBERTa - Thai | 5B | 2 | 10B | 1.02% |
| mC4 - Lao | 0.27B | 4 | 1.1B | 0.12% |
| mC4 - Khmer | 0.97B | 4 | 3.9B | 0.40% |
| mC4 - Tamil | 2.55B | 4 | 10.2B | 1.04% |
| the Stack - Python | 20.9B | 2 | 41.8B | 4.26% |
| the Stack - Javascript | 55.6B | 1 | 55.6B | 5.66% |
| the Stack - Shell | 1.2B5 | 2 | 2.5B | 0.26% |
| the Stack - SQL | 6.4B | 2 | 12.8B | 1.31% |
| the Stack - Markdown | 26.6B | 1 | 26.6B | 2.71% |
| RedPajama - StackExchange | 21.2B | 1 | 21.2B | 2.16% |
| RedPajama - ArXiv | 30.6B | 1 | 30.6B | 3.12% |
### Infrastructure
SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:
| Training Details | SEA-LION 7B |
|----------------------|:------------:|
| AWS EC2 p4d.24xlarge | 32 instances |
| Nvidia A100 40GB GPU | 256 |
| Training Duration | 22 days |
### Configuration
| HyperParameter | SEA-LION 7B |
|-------------------|:------------------:|
| Precision | bfloat16 |
| Optimizer | decoupled_adamw |
| Scheduler | cosine_with_warmup |
| Learning Rate | 6.0e-5 |
| Global Batch Size | 2048 |
| Micro Batch Size | 4 |
## Technical Specifications
### Model Architecture and Objective
SEA-LION is a decoder model using the MPT architecture.
| Parameter | SEA-LION 7B |
|-----------------|:-----------:|
| Layers | 32 |
| d_model | 4096 |
| head_dim | 32 |
| Vocabulary | 256000 |
| Sequence Length | 2048 |
### Tokenizer Details
We sample 20M lines from the training data to train the tokenizer.<br>
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
The tokenizer type is Byte-Pair Encoding (BPE).
## The Team
Lam Wen Zhi Clarence<br>
Leong Wei Qi<br>
Li Yier<br>
Liu Bing Jie Darius<br>
Lovenia Holy<br>
Montalan Jann Railey<br>
Ng Boon Cheong Raymond<br>
Ngui Jian Gang<br>
Nguyen Thanh Ngan<br>
Ong Tat-Wee David<br>
Rengarajan Hamsawardhini<br>
Susanto Yosephine<br>
Tai Ngee Chia<br>
Tan Choon Meng<br>
Teo Jin Howe<br>
Teo Eng Sipp Leslie<br>
Teo Wei Yi<br>
Tjhi William<br>
Yeo Yeow Tong<br>
Yong Xianbin<br>
## Acknowledgements
AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
## Disclaimer
This the repository for the base model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claim, damages, or other liability
arising from the use of the released weights and codes.
## References
```bibtex
@misc{lowphansirikul2021wangchanberta,
title={WangchanBERTa: Pretraining transformer-based Thai Language Models},
author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
year={2021},
eprint={2101.09635},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |