update SEA-LION 3B model details
Browse files
README.md
CHANGED
@@ -1,130 +1,80 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
8 |
-
SEA LION is a collection of LLMs which has been pretrained and instruct-tuned for the Southeast Asia region.
|
9 |
The models range from 3 billion to 7 billion parameters.
|
10 |
-
This is the
|
|
|
|
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
The SEA LION model is a significant leap forward in the field of natural language processing and understanding,
|
18 |
specifically trained to understand South-East Asia (SEA) regional context.
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
The model employs our proprietary SEABPETokenizer for tokenization.
|
23 |
Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
|
24 |
-
The training data for SEA LION is encompasses 1 trillion tokens.
|
25 |
|
|
|
26 |
|
27 |
- **Developed by:** Products Pillar, AI Singapore
|
28 |
-
- **Funded by
|
29 |
-
- **Shared by [optional]:** N/A
|
30 |
- **Model type:** Decoder
|
31 |
- **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
32 |
- **License:** MIT License
|
33 |
-
- **Finetuned from model [optional]:** N/A
|
34 |
-
|
35 |
-
### Model Sources [optional]
|
36 |
-
|
37 |
-
<!-- Provide the basic links for the model. -->
|
38 |
-
|
39 |
-
- **Repository:** _Coming soon_
|
40 |
-
- **Paper [optional]:** _Coming soon_
|
41 |
-
- **Demo [optional]:** _Coming soon_
|
42 |
-
|
43 |
-
## Uses
|
44 |
-
|
45 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
46 |
-
|
47 |
-
### Direct Use
|
48 |
-
|
49 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
50 |
-
|
51 |
-
[More Information Needed]
|
52 |
-
|
53 |
-
### Downstream Use [optional]
|
54 |
-
|
55 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
56 |
-
|
57 |
-
[More Information Needed]
|
58 |
-
|
59 |
-
### Out-of-Scope Use
|
60 |
-
|
61 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
62 |
|
63 |
-
[More Information Needed]
|
64 |
-
|
65 |
-
## Bias, Risks, and Limitations
|
66 |
-
|
67 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
68 |
-
|
69 |
-
[More Information Needed]
|
70 |
-
|
71 |
-
### Recommendations
|
72 |
-
|
73 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
74 |
-
|
75 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
76 |
-
|
77 |
-
## How to Get Started with the Model
|
78 |
-
|
79 |
-
Use the code below to get started with the model.
|
80 |
-
|
81 |
-
[ Todo: Insert Code Here ]
|
82 |
|
83 |
## Training Details
|
84 |
|
85 |
-
###
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
| Data Source | Tokens | Percentage |
|
92 |
-
|------------------------|--------|------------|
|
93 |
-
| RefinedWeb - English | 571.3B | 62.80% |
|
94 |
-
| mC4 - Chinese | 91.2B | 10.03% |
|
95 |
-
| mC4 - Indonesian | 3.6B | 0.40% |
|
96 |
-
| mC4 - Malay | 0.7B | 0.08% |
|
97 |
-
| mC4 - Filipino | 1.3B | 0.15% |
|
98 |
-
| mC4 - Burmese | 1.2B | 0.13% |
|
99 |
-
| mC4 - Vietnamese | 63.4B | 6.97% |
|
100 |
-
| mC4 - Thai | 10.8B | 1.19% |
|
101 |
-
| mC4 - Lao | 0.3B | 0.03% |
|
102 |
-
| mC4 - Khmer | 0.9B | 0.11% |
|
103 |
-
| mC4 - Tamil | 2.5B | 0.28% |
|
104 |
-
| Python | 20.9B | 2.30% |
|
105 |
-
| Javascript | 55.6B | 6.11% |
|
106 |
-
| Shell | 1.3B | 0.14% |
|
107 |
-
| SQL | 6.4B | 0.70% |
|
108 |
-
| Markdown | 26.6B | 2.91% |
|
109 |
-
| StackExchange | 21.2B | 2.33% |
|
110 |
-
| ArXiv | 30.6B | 3.35% |
|
111 |
|
112 |
-
###
|
113 |
|
114 |
-
|
|
|
115 |
|
116 |
-
SEA
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
SEA LION 7B was trained on 256 A100 40GB GPUs, using MosaicML Composer.
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
#### Training Hyperparameters
|
125 |
-
|
126 |
-
| Hyperparameter | Value |
|
127 |
-
|-------------------|--------------------|
|
128 |
| Precision | bfloat16 |
|
129 |
| Optimizer | decoupled_adamw |
|
130 |
| Scheduler | cosine_with_warmup |
|
@@ -132,126 +82,41 @@ N/A
|
|
132 |
| Global Batch Size | 1200 |
|
133 |
| Micro Batch Size | 5 |
|
134 |
|
135 |
-
#### Speeds, Sizes, Times [optional]
|
136 |
-
|
137 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
138 |
-
|
139 |
-
The training took 14 days to complete.
|
140 |
-
|
141 |
-
## Evaluation
|
142 |
-
|
143 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
144 |
-
|
145 |
-
### Testing Data, Factors & Metrics
|
146 |
-
|
147 |
-
#### Testing Data
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
_Coming soon_
|
152 |
-
|
153 |
-
#### Factors
|
154 |
-
|
155 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
156 |
-
|
157 |
-
_Coming soon_
|
158 |
-
|
159 |
-
#### Metrics
|
160 |
-
|
161 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
162 |
-
|
163 |
-
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
|
164 |
-
|-------------|:-------:|:-----:|:---------:|:-----:|:----------:|
|
165 |
-
| SEA LION 3B | 40.35 | 36.26 | 64.60 | 24.07 | 36.47 |
|
166 |
-
| SEA LION 7B | 42.60 | 39.93 | 68.51 | 26.87 | 35.09 |
|
167 |
-
|
168 |
-
|
169 |
-
### Results
|
170 |
-
|
171 |
-
_Coming soon_
|
172 |
-
|
173 |
-
#### Summary
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
## Model Examination [optional]
|
178 |
-
|
179 |
-
<!-- Relevant interpretability work for the model goes here -->
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Environmental Impact
|
184 |
-
|
185 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
186 |
-
|
187 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
188 |
-
|
189 |
-
- **Hardware Type:** [More Information Needed]
|
190 |
-
- **Hours used:** [More Information Needed]
|
191 |
-
- **Cloud Provider:** [More Information Needed]
|
192 |
-
- **Compute Region:** [More Information Needed]
|
193 |
-
- **Carbon Emitted:** [More Information Needed]
|
194 |
-
|
195 |
-
## Technical Specifications [optional]
|
196 |
|
197 |
### Model Architecture and Objective
|
198 |
|
199 |
-
SEA
|
200 |
-
|
201 |
-
| Parameter | Value |
|
202 |
-
|-----------------|--------|
|
203 |
-
| Layers | 40 |
|
204 |
-
| d_model | ? |
|
205 |
-
| head_dim | ? |
|
206 |
-
| Vocabulary | 256000 |
|
207 |
-
| Sequence Length | 2048 |
|
208 |
-
|
209 |
-
### Compute Infrastructure
|
210 |
-
|
211 |
-
#### Hardware
|
212 |
-
|
213 |
-
SEA LION 3B was trained on AWS EC2 cluster comprising 30 p4d.24xlarge instances, using a total of 240 A100 40GB GPUs.
|
214 |
-
|
215 |
-
SEA LION 7B was trained on AWS EC2 cluster comprising 32 p4d.24xlarge instances, using a total of 256 A100 40GB GPUs.
|
216 |
-
|
217 |
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
SEA LION 3B was trained using MosaicML Composer using PyTorch FullyShardedDataParallelism (FSDP).
|
221 |
|
222 |
-
|
223 |
|
224 |
-
|
|
|
|
|
225 |
|
226 |
-
**BibTeX:**
|
227 |
|
228 |
-
N/A
|
229 |
-
|
230 |
-
**APA:**
|
231 |
-
|
232 |
-
N/A
|
233 |
-
|
234 |
-
## Glossary [optional]
|
235 |
-
|
236 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
237 |
-
|
238 |
-
N/A
|
239 |
-
|
240 |
-
## More Information [optional]
|
241 |
-
|
242 |
-
N/A
|
243 |
|
244 |
## The Team
|
245 |
|
246 |
-
Darius Liu<br>
|
247 |
-
David Ong Tat-Wee<br>
|
248 |
Hamsawardhini Rengarajan<br>
|
249 |
-
|
250 |
-
Lam Clarence<br>
|
251 |
Leong Weiqi<br>
|
252 |
Li Yier<br>
|
|
|
|
|
253 |
Ng Raymond<br>
|
254 |
Ngui Jian Gang<br>
|
|
|
255 |
Railey Montalan<br>
|
256 |
Tai Ngee Chia<br>
|
257 |
Tan Choon Meng<br>
|
@@ -264,8 +129,7 @@ Yong Xianbin<br>
|
|
264 |
Yosephine<br>
|
265 |
Leslie Teo<br>
|
266 |
|
267 |
-
##
|
268 |
|
269 |
For more info, please contact us at [email protected]
|
270 |
|
271 |
-
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
# SEA-LION
|
5 |
|
6 |
+
SEA-LION is a collection of LLMs which has been pretrained and instruct-tuned for the South-East Asia (SEA) region.
|
|
|
|
|
|
|
7 |
The models range from 3 billion to 7 billion parameters.
|
8 |
+
This is the card for the SEA-LION 3B model.
|
9 |
+
|
10 |
+
SEA-LION stands for <i>South-East Asia Languages In One Network</i>.
|
11 |
+
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
### Model Description
|
16 |
|
17 |
+
The SEA-LION model is a significant leap forward in the field of natural language processing and understanding,
|
|
|
18 |
specifically trained to understand South-East Asia (SEA) regional context.
|
19 |
+
|
20 |
+
SEA-LION is built on the robust MPT architecture and utilize a vocabulary size of 256K.
|
21 |
+
|
22 |
The model employs our proprietary SEABPETokenizer for tokenization.
|
23 |
Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
|
|
|
24 |
|
25 |
+
The training data for SEA-LION encompasses 980B tokens.
|
26 |
|
27 |
- **Developed by:** Products Pillar, AI Singapore
|
28 |
+
- **Funded by:** Singapore NRF
|
|
|
29 |
- **Model type:** Decoder
|
30 |
- **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
31 |
- **License:** MIT License
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Training Details
|
35 |
|
36 |
+
### Data
|
37 |
|
38 |
+
SEA-LION was trained on 980B tokens of the following data:
|
39 |
|
40 |
+
| Data Source | Tokens | Percentage |
|
41 |
+
|---------------------------|-------:|:----------:|
|
42 |
+
| RefinedWeb - English | 571.3B | 62.80% |
|
43 |
+
| mC4 - Chinese | 91.2B | 10.03% |
|
44 |
+
| mC4 - Indonesian | 3.6B | 0.40% |
|
45 |
+
| mC4 - Malay | 0.7B | 0.08% |
|
46 |
+
| mC4 - Filipino | 1.3B | 0.15% |
|
47 |
+
| mC4 - Burmese | 1.2B | 0.13% |
|
48 |
+
| mC4 - Vietnamese | 63.4B | 6.97% |
|
49 |
+
| mC4 - Thai | 10.8B | 1.19% |
|
50 |
+
| mC4 - Lao | 0.3B | 0.03% |
|
51 |
+
| mC4 - Khmer | 0.9B | 0.11% |
|
52 |
+
| mC4 - Tamil | 2.5B | 0.28% |
|
53 |
+
| the Stack - Python | 20.9B | 2.30% |
|
54 |
+
| the Stack - Javascript | 55.6B | 6.11% |
|
55 |
+
| the Stack - Shell | 1.3B | 0.14% |
|
56 |
+
| the Stack - SQL | 6.4B | 0.70% |
|
57 |
+
| the Stack - Markdown | 26.6B | 2.91% |
|
58 |
+
| RedPajama - StackExchange | 21.2B | 2.33% |
|
59 |
+
| RedPajama - ArXiv | 30.6B | 3.35% |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
### Infrastructure
|
63 |
|
64 |
+
SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
|
65 |
+
on the following hardware:
|
66 |
|
67 |
+
| Training Details | SEA-LION 3B |
|
68 |
+
|----------------------|:------------:|
|
69 |
+
| AWS EC2 p4d.24xlarge | 30 instances |
|
70 |
+
| Nvidia A100 40GB GPU | 240 |
|
71 |
+
| Training Duration | 14 days |
|
72 |
|
|
|
73 |
|
74 |
+
### Configuration
|
75 |
|
76 |
+
| HyperParameter | SEA-LION 3B |
|
77 |
+
|-------------------|:------------------:|
|
|
|
|
|
|
|
|
|
78 |
| Precision | bfloat16 |
|
79 |
| Optimizer | decoupled_adamw |
|
80 |
| Scheduler | cosine_with_warmup |
|
|
|
82 |
| Global Batch Size | 1200 |
|
83 |
| Micro Batch Size | 5 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
## Technical Specifications
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
### Model Architecture and Objective
|
89 |
|
90 |
+
SEA-LION is a decoder model using the MPT architecture.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
| Parameter | SEA-LION 3B |
|
93 |
+
|-----------------|:-----------:|
|
94 |
+
| Layers | 32 |
|
95 |
+
| d_model | 2560 |
|
96 |
+
| head_dim | 20 |
|
97 |
+
| Vocabulary | 256000 |
|
98 |
+
| Sequence Length | 2048 |
|
99 |
|
|
|
100 |
|
101 |
+
### Tokenizer Details
|
102 |
|
103 |
+
We sample 20M lines from the training data to train the tokenizer.<br>
|
104 |
+
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
|
105 |
+
The tokenizer type is Byte-Pair Encoding (BPE).
|
106 |
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
## The Team
|
110 |
|
|
|
|
|
111 |
Hamsawardhini Rengarajan<br>
|
112 |
+
Lam Zhiwen Clarence<br>
|
|
|
113 |
Leong Weiqi<br>
|
114 |
Li Yier<br>
|
115 |
+
Liu Darius<br>
|
116 |
+
Lovenia Holy<br>
|
117 |
Ng Raymond<br>
|
118 |
Ngui Jian Gang<br>
|
119 |
+
Ong Tat-Wee David<br>
|
120 |
Railey Montalan<br>
|
121 |
Tai Ngee Chia<br>
|
122 |
Tan Choon Meng<br>
|
|
|
129 |
Yosephine<br>
|
130 |
Leslie Teo<br>
|
131 |
|
132 |
+
## Contact
|
133 |
|
134 |
For more info, please contact us at [email protected]
|
135 |
|
|