dotw commited on
Commit
b83464d
·
1 Parent(s): 430b3b1

update SEA-LION 3B model details

Browse files
Files changed (1) hide show
  1. README.md +63 -199
README.md CHANGED
@@ -1,130 +1,80 @@
1
  ---
2
  license: mit
3
  ---
 
4
 
5
- # Model Card for SEA LION
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
- SEA LION is a collection of LLMs which has been pretrained and instruct-tuned for the Southeast Asia region.
9
  The models range from 3 billion to 7 billion parameters.
10
- This is the repository for the 3B pretrained model.
 
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
- The SEA LION model is a significant leap forward in the field of natural language processing and understanding,
18
  specifically trained to understand South-East Asia (SEA) regional context.
19
- SEA LION stands for SouthEast Asian Languages In One Network.
20
- The SEA LION model comes in two variants, one with 3 billion parameters and another with 7 billion parameters.
21
- Both variants are built on the robust MPT architecture and utilize a vocabulary size of 256K.
22
  The model employs our proprietary SEABPETokenizer for tokenization.
23
  Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
24
- The training data for SEA LION is encompasses 1 trillion tokens.
25
 
 
26
 
27
  - **Developed by:** Products Pillar, AI Singapore
28
- - **Funded by [optional]:** Singapore NRF
29
- - **Shared by [optional]:** N/A
30
  - **Model type:** Decoder
31
  - **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
32
  - **License:** MIT License
33
- - **Finetuned from model [optional]:** N/A
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** _Coming soon_
40
- - **Paper [optional]:** _Coming soon_
41
- - **Demo [optional]:** _Coming soon_
42
-
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
-
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
-
57
- [More Information Needed]
58
-
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
 
63
- [More Information Needed]
64
-
65
- ## Bias, Risks, and Limitations
66
-
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Recommendations
72
-
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [ Todo: Insert Code Here ]
82
 
83
  ## Training Details
84
 
85
- ### Training Data
86
 
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
 
89
- SEA LION 3B was trained on 980B tokens of the following data:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
- | Data Source | Tokens | Percentage |
92
- |------------------------|--------|------------|
93
- | RefinedWeb - English | 571.3B | 62.80% |
94
- | mC4 - Chinese | 91.2B | 10.03% |
95
- | mC4 - Indonesian | 3.6B | 0.40% |
96
- | mC4 - Malay | 0.7B | 0.08% |
97
- | mC4 - Filipino | 1.3B | 0.15% |
98
- | mC4 - Burmese | 1.2B | 0.13% |
99
- | mC4 - Vietnamese | 63.4B | 6.97% |
100
- | mC4 - Thai | 10.8B | 1.19% |
101
- | mC4 - Lao | 0.3B | 0.03% |
102
- | mC4 - Khmer | 0.9B | 0.11% |
103
- | mC4 - Tamil | 2.5B | 0.28% |
104
- | Python | 20.9B | 2.30% |
105
- | Javascript | 55.6B | 6.11% |
106
- | Shell | 1.3B | 0.14% |
107
- | SQL | 6.4B | 0.70% |
108
- | Markdown | 26.6B | 2.91% |
109
- | StackExchange | 21.2B | 2.33% |
110
- | ArXiv | 30.6B | 3.35% |
111
 
112
- ### Training Procedure
113
 
114
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
115
 
116
- SEA LION 3B was trained on 240 A100 40GB GPUs, using MosaicML Composer.
 
 
 
 
117
 
118
- SEA LION 7B was trained on 256 A100 40GB GPUs, using MosaicML Composer.
119
 
120
- #### Preprocessing [optional]
121
 
122
- N/A
123
-
124
- #### Training Hyperparameters
125
-
126
- | Hyperparameter | Value |
127
- |-------------------|--------------------|
128
  | Precision | bfloat16 |
129
  | Optimizer | decoupled_adamw |
130
  | Scheduler | cosine_with_warmup |
@@ -132,126 +82,41 @@ N/A
132
  | Global Batch Size | 1200 |
133
  | Micro Batch Size | 5 |
134
 
135
- #### Speeds, Sizes, Times [optional]
136
-
137
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
138
-
139
- The training took 14 days to complete.
140
-
141
- ## Evaluation
142
-
143
- <!-- This section describes the evaluation protocols and provides the results. -->
144
-
145
- ### Testing Data, Factors & Metrics
146
-
147
- #### Testing Data
148
 
149
- <!-- This should link to a Dataset Card if possible. -->
150
-
151
- _Coming soon_
152
-
153
- #### Factors
154
-
155
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
156
-
157
- _Coming soon_
158
-
159
- #### Metrics
160
-
161
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
162
-
163
- | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
164
- |-------------|:-------:|:-----:|:---------:|:-----:|:----------:|
165
- | SEA LION 3B | 40.35 | 36.26 | 64.60 | 24.07 | 36.47 |
166
- | SEA LION 7B | 42.60 | 39.93 | 68.51 | 26.87 | 35.09 |
167
-
168
-
169
- ### Results
170
-
171
- _Coming soon_
172
-
173
- #### Summary
174
-
175
-
176
-
177
- ## Model Examination [optional]
178
-
179
- <!-- Relevant interpretability work for the model goes here -->
180
-
181
- [More Information Needed]
182
-
183
- ## Environmental Impact
184
-
185
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
186
-
187
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
188
-
189
- - **Hardware Type:** [More Information Needed]
190
- - **Hours used:** [More Information Needed]
191
- - **Cloud Provider:** [More Information Needed]
192
- - **Compute Region:** [More Information Needed]
193
- - **Carbon Emitted:** [More Information Needed]
194
-
195
- ## Technical Specifications [optional]
196
 
197
  ### Model Architecture and Objective
198
 
199
- SEA LION 3B is a decoder model using the MPT architecture.
200
-
201
- | Parameter | Value |
202
- |-----------------|--------|
203
- | Layers | 40 |
204
- | d_model | ? |
205
- | head_dim | ? |
206
- | Vocabulary | 256000 |
207
- | Sequence Length | 2048 |
208
-
209
- ### Compute Infrastructure
210
-
211
- #### Hardware
212
-
213
- SEA LION 3B was trained on AWS EC2 cluster comprising 30 p4d.24xlarge instances, using a total of 240 A100 40GB GPUs.
214
-
215
- SEA LION 7B was trained on AWS EC2 cluster comprising 32 p4d.24xlarge instances, using a total of 256 A100 40GB GPUs.
216
-
217
 
218
- #### Software
 
 
 
 
 
 
219
 
220
- SEA LION 3B was trained using MosaicML Composer using PyTorch FullyShardedDataParallelism (FSDP).
221
 
222
- ## Citation [optional]
223
 
224
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
225
 
226
- **BibTeX:**
227
 
228
- N/A
229
-
230
- **APA:**
231
-
232
- N/A
233
-
234
- ## Glossary [optional]
235
-
236
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
237
-
238
- N/A
239
-
240
- ## More Information [optional]
241
-
242
- N/A
243
 
244
  ## The Team
245
 
246
- Darius Liu<br>
247
- David Ong Tat-Wee<br>
248
  Hamsawardhini Rengarajan<br>
249
- Holy Lovenia<br>
250
- Lam Clarence<br>
251
  Leong Weiqi<br>
252
  Li Yier<br>
 
 
253
  Ng Raymond<br>
254
  Ngui Jian Gang<br>
 
255
  Railey Montalan<br>
256
  Tai Ngee Chia<br>
257
  Tan Choon Meng<br>
@@ -264,8 +129,7 @@ Yong Xianbin<br>
264
  Yosephine<br>
265
  Leslie Teo<br>
266
 
267
- ## Model Card Contact
268
 
269
  For more info, please contact us at [email protected]
270
 
271
-
 
1
  ---
2
  license: mit
3
  ---
4
+ # SEA-LION
5
 
6
+ SEA-LION is a collection of LLMs which has been pretrained and instruct-tuned for the South-East Asia (SEA) region.
 
 
 
7
  The models range from 3 billion to 7 billion parameters.
8
+ This is the card for the SEA-LION 3B model.
9
+
10
+ SEA-LION stands for <i>South-East Asia Languages In One Network</i>.
11
+
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
+ The SEA-LION model is a significant leap forward in the field of natural language processing and understanding,
 
18
  specifically trained to understand South-East Asia (SEA) regional context.
19
+
20
+ SEA-LION is built on the robust MPT architecture and utilize a vocabulary size of 256K.
21
+
22
  The model employs our proprietary SEABPETokenizer for tokenization.
23
  Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
 
24
 
25
+ The training data for SEA-LION encompasses 980B tokens.
26
 
27
  - **Developed by:** Products Pillar, AI Singapore
28
+ - **Funded by:** Singapore NRF
 
29
  - **Model type:** Decoder
30
  - **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
31
  - **License:** MIT License
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Training Details
35
 
36
+ ### Data
37
 
38
+ SEA-LION was trained on 980B tokens of the following data:
39
 
40
+ | Data Source | Tokens | Percentage |
41
+ |---------------------------|-------:|:----------:|
42
+ | RefinedWeb - English | 571.3B | 62.80% |
43
+ | mC4 - Chinese | 91.2B | 10.03% |
44
+ | mC4 - Indonesian | 3.6B | 0.40% |
45
+ | mC4 - Malay | 0.7B | 0.08% |
46
+ | mC4 - Filipino | 1.3B | 0.15% |
47
+ | mC4 - Burmese | 1.2B | 0.13% |
48
+ | mC4 - Vietnamese | 63.4B | 6.97% |
49
+ | mC4 - Thai | 10.8B | 1.19% |
50
+ | mC4 - Lao | 0.3B | 0.03% |
51
+ | mC4 - Khmer | 0.9B | 0.11% |
52
+ | mC4 - Tamil | 2.5B | 0.28% |
53
+ | the Stack - Python | 20.9B | 2.30% |
54
+ | the Stack - Javascript | 55.6B | 6.11% |
55
+ | the Stack - Shell | 1.3B | 0.14% |
56
+ | the Stack - SQL | 6.4B | 0.70% |
57
+ | the Stack - Markdown | 26.6B | 2.91% |
58
+ | RedPajama - StackExchange | 21.2B | 2.33% |
59
+ | RedPajama - ArXiv | 30.6B | 3.35% |
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ ### Infrastructure
63
 
64
+ SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
65
+ on the following hardware:
66
 
67
+ | Training Details | SEA-LION 3B |
68
+ |----------------------|:------------:|
69
+ | AWS EC2 p4d.24xlarge | 30 instances |
70
+ | Nvidia A100 40GB GPU | 240 |
71
+ | Training Duration | 14 days |
72
 
 
73
 
74
+ ### Configuration
75
 
76
+ | HyperParameter | SEA-LION 3B |
77
+ |-------------------|:------------------:|
 
 
 
 
78
  | Precision | bfloat16 |
79
  | Optimizer | decoupled_adamw |
80
  | Scheduler | cosine_with_warmup |
 
82
  | Global Batch Size | 1200 |
83
  | Micro Batch Size | 5 |
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  ### Model Architecture and Objective
89
 
90
+ SEA-LION is a decoder model using the MPT architecture.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ | Parameter | SEA-LION 3B |
93
+ |-----------------|:-----------:|
94
+ | Layers | 32 |
95
+ | d_model | 2560 |
96
+ | head_dim | 20 |
97
+ | Vocabulary | 256000 |
98
+ | Sequence Length | 2048 |
99
 
 
100
 
101
+ ### Tokenizer Details
102
 
103
+ We sample 20M lines from the training data to train the tokenizer.<br>
104
+ The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
105
+ The tokenizer type is Byte-Pair Encoding (BPE).
106
 
 
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
  ## The Team
110
 
 
 
111
  Hamsawardhini Rengarajan<br>
112
+ Lam Zhiwen Clarence<br>
 
113
  Leong Weiqi<br>
114
  Li Yier<br>
115
+ Liu Darius<br>
116
+ Lovenia Holy<br>
117
  Ng Raymond<br>
118
  Ngui Jian Gang<br>
119
+ Ong Tat-Wee David<br>
120
  Railey Montalan<br>
121
  Tai Ngee Chia<br>
122
  Tan Choon Meng<br>
 
129
  Yosephine<br>
130
  Leslie Teo<br>
131
 
132
+ ## Contact
133
 
134
  For more info, please contact us at [email protected]
135