Update README.md
Browse files
README.md
CHANGED
@@ -28,8 +28,8 @@ The training data for SEA LION is encompasses 1 trillion tokens.
|
|
28 |
- **Funded by [optional]:** Singapore NRF
|
29 |
- **Shared by [optional]:** N/A
|
30 |
- **Model type:** Decoder
|
31 |
-
- **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino
|
32 |
-
- **License:**
|
33 |
- **Finetuned from model [optional]:** N/A
|
34 |
|
35 |
### Model Sources [optional]
|
@@ -86,7 +86,7 @@ Use the code below to get started with the model.
|
|
86 |
|
87 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
88 |
|
89 |
-
SEA LION 3B was trained on 980B tokens of
|
90 |
|
91 |
| Data Source | Tokens | Percentage |
|
92 |
|------------------------|--------|------------|
|
@@ -94,7 +94,7 @@ SEA LION 3B was trained on 980B tokens of RefinedWeb (English) and mC4 (Chinese,
|
|
94 |
| mC4 - Chinese | 91.2B | 10.03% |
|
95 |
| mC4 - Indonesian | 3.6B | 0.40% |
|
96 |
| mC4 - Malay | 0.7B | 0.08% |
|
97 |
-
| mC4 - Filipino
|
98 |
| mC4 - Burmese | 1.2B | 0.13% |
|
99 |
| mC4 - Vietnamese | 63.4B | 6.97% |
|
100 |
| mC4 - Thai | 10.8B | 1.19% |
|
@@ -113,7 +113,9 @@ SEA LION 3B was trained on 980B tokens of RefinedWeb (English) and mC4 (Chinese,
|
|
113 |
|
114 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
115 |
|
116 |
-
SEA LION 3B was trained on
|
|
|
|
|
117 |
|
118 |
#### Preprocessing [optional]
|
119 |
|
@@ -121,14 +123,14 @@ N/A
|
|
121 |
|
122 |
#### Training Hyperparameters
|
123 |
|
124 |
-
| Hyperparameter | Value
|
125 |
-
|
126 |
-
| Precision | bfloat16
|
127 |
-
| Optimizer | decoupled_adamw
|
128 |
-
| Scheduler |
|
129 |
-
| Learning Rate | 1.6e-4
|
130 |
-
| Global Batch Size | 1200
|
131 |
-
| Micro Batch Size | 5
|
132 |
|
133 |
#### Speeds, Sizes, Times [optional]
|
134 |
|
@@ -159,6 +161,7 @@ _Coming soon_
|
|
159 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
160 |
|
161 |
_Coming soon_
|
|
|
162 |
|
163 |
### Results
|
164 |
|
@@ -204,7 +207,10 @@ SEA LION 3B is a decoder model using the MPT architecture.
|
|
204 |
|
205 |
#### Hardware
|
206 |
|
207 |
-
SEA LION 3B was trained on AWS EC2 cluster comprising
|
|
|
|
|
|
|
208 |
|
209 |
#### Software
|
210 |
|
@@ -234,6 +240,8 @@ N/A
|
|
234 |
|
235 |
## The Team
|
236 |
|
|
|
|
|
237 |
Hamsawardhini Rengarajan<br>
|
238 |
Holy Lovenia<br>
|
239 |
Lam Clarence<br>
|
@@ -247,12 +255,10 @@ Tan Choon Meng<br>
|
|
247 |
Thanh Ngan Nguyen<br>
|
248 |
Teo Jin Howe<br>
|
249 |
Teo Wei Yi<br>
|
|
|
250 |
Yeo Yeow Tong<br>
|
251 |
Yong Xianbin<br>
|
252 |
Yosephine<br>
|
253 |
-
William Tjhi<br>
|
254 |
-
David Ong Tat-Wee<br>
|
255 |
-
Darius Liu<br>
|
256 |
Leslie Teo<br>
|
257 |
|
258 |
## Model Card Contact
|
|
|
28 |
- **Funded by [optional]:** Singapore NRF
|
29 |
- **Shared by [optional]:** N/A
|
30 |
- **Model type:** Decoder
|
31 |
+
- **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
32 |
+
- **License:** MIT License
|
33 |
- **Finetuned from model [optional]:** N/A
|
34 |
|
35 |
### Model Sources [optional]
|
|
|
86 |
|
87 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
88 |
|
89 |
+
SEA LION 3B was trained on 980B tokens of the following data:
|
90 |
|
91 |
| Data Source | Tokens | Percentage |
|
92 |
|------------------------|--------|------------|
|
|
|
94 |
| mC4 - Chinese | 91.2B | 10.03% |
|
95 |
| mC4 - Indonesian | 3.6B | 0.40% |
|
96 |
| mC4 - Malay | 0.7B | 0.08% |
|
97 |
+
| mC4 - Filipino | 1.3B | 0.15% |
|
98 |
| mC4 - Burmese | 1.2B | 0.13% |
|
99 |
| mC4 - Vietnamese | 63.4B | 6.97% |
|
100 |
| mC4 - Thai | 10.8B | 1.19% |
|
|
|
113 |
|
114 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
115 |
|
116 |
+
SEA LION 3B was trained on 240 A100 40GB GPUs, using MosaicML Composer.
|
117 |
+
|
118 |
+
SEA LION 7B was trained on 256 A100 40GB GPUs, using MosaicML Composer.
|
119 |
|
120 |
#### Preprocessing [optional]
|
121 |
|
|
|
123 |
|
124 |
#### Training Hyperparameters
|
125 |
|
126 |
+
| Hyperparameter | Value |
|
127 |
+
|-------------------|--------------------|
|
128 |
+
| Precision | bfloat16 |
|
129 |
+
| Optimizer | decoupled_adamw |
|
130 |
+
| Scheduler | cosine_with_warmup |
|
131 |
+
| Learning Rate | 1.6e-4 |
|
132 |
+
| Global Batch Size | 1200 |
|
133 |
+
| Micro Batch Size | 5 |
|
134 |
|
135 |
#### Speeds, Sizes, Times [optional]
|
136 |
|
|
|
161 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
162 |
|
163 |
_Coming soon_
|
164 |
+
LLM Eval Benchmarks, no BHASA
|
165 |
|
166 |
### Results
|
167 |
|
|
|
207 |
|
208 |
#### Hardware
|
209 |
|
210 |
+
SEA LION 3B was trained on AWS EC2 cluster comprising 30 p4d.24xlarge instances, using a total of 240 A100 40GB GPUs.
|
211 |
+
|
212 |
+
SEA LION 7B was trained on AWS EC2 cluster comprising 32 p4d.24xlarge instances, using a total of 256 A100 40GB GPUs.
|
213 |
+
|
214 |
|
215 |
#### Software
|
216 |
|
|
|
240 |
|
241 |
## The Team
|
242 |
|
243 |
+
Darius Liu<br>
|
244 |
+
David Ong Tat-Wee<br>
|
245 |
Hamsawardhini Rengarajan<br>
|
246 |
Holy Lovenia<br>
|
247 |
Lam Clarence<br>
|
|
|
255 |
Thanh Ngan Nguyen<br>
|
256 |
Teo Jin Howe<br>
|
257 |
Teo Wei Yi<br>
|
258 |
+
William Tjhi<br>
|
259 |
Yeo Yeow Tong<br>
|
260 |
Yong Xianbin<br>
|
261 |
Yosephine<br>
|
|
|
|
|
|
|
262 |
Leslie Teo<br>
|
263 |
|
264 |
## Model Card Contact
|