File size: 9,423 Bytes
2f83a17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
language:
- en
- zh
- vi
- id
- th
- fil
- ta
- ms
- km
- lo
- my
- jv
- su
license: llama3.1
library_name: transformers
pipeline_tag: text-generation
base_model: meta-llama/Llama-3.1-8B-Instruct
---
# Llama3.1 8B CPT SEA-LIONv3
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
This is the card for the Llama3.1 8B CPT SEA-LIONv3 base model which has undergone continued pre-training from the instruct [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model.

SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.

## Model Details
### Model Description

The continued pre-training data for Llama3.1 8B CPT SEA-LIONv3 base model encompasses approximately 200B tokens.

- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages:** English, Chinese, Vietnamese, Indonesian, Thai, Filipino, Tamil, Malay, Khmer, Lao, Burmese, Javanese, Sundanese
- **License:** [Gemma Community License](https://ai.google.dev/gemma/terms)

For tokenisation, the model employs the default tokenizer used in Llama3.1 8B Instruct.

### Benchmark Performance
We evaluated Llama3.1 8B CPT SEA-LIONv3 base model on general language capabilities.

#### General Language Capabilities
For the evaluation of general language capabilities, we employed the [SEA HELM (also known as BHASA) evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarization (Summ), Causal Reasoning (Causal) and Natural Language Inference (NLI).

Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.

The evaluation was done **five-shot** with native prompts on a sample of 100-1000 instances for each dataset.

For more details on Llama3.1 8B CPT SEA-LIONv3 base benchmark performance, please refer to the SEA HELM leaderboard, https://leaderboard.sea-lion.ai/

## Training Details
### Data
Llama3.1 8B CPT SEA-LIONv3 base model was continued pre-trained on 200B tokens of the following data:

| Data Source                           | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
|---------------------------------------|:-----------------:|:----------:|:----------------:|:-------------:|
| StackV2                               | 40.0              | 1          | 40.0             | 20.00         |
| Wiki* + News* - English               | 5.0               | 1          | 5.0              | 2.50          |
| Fineweb-Edu                           | 7.5               | 1          | 7.5              | 3.75          |
| Dolma Project Gutenberg               | 5.0               | 1          | 5.0              | 2.50          |
| Dolma arXiv                           | 1.7               | 1          | 1.7              | 0.83          |
| Dolma StackExchange                   | 1.7               | 1          | 1.7              | 0.83          |
| Dolma Semantic Scholar                | 1.7               | 1          | 1.7              | 0.83          |
| Dolma OpenWebMath                     | 2.5               | 1          | 2.5              | 1.25          |
| Dolma Algebraic Stack                 | 2.5               | 1          | 2.5              | 1.25          |
| Dolma Flan                            | 5.0               | 1          | 5.0              | 2.50          |
| Dolma Reddit                          | 5.0               | 1          | 5.0              | 2.50          |
| Dolma Megawika                        | 5.0               | 1          | 5.0              | 2.50          |
| Dolma CC News                         | 7.5               | 1          | 7.5              | 3.75          |
| Wiki* + News* - Chinese               | 3.5               | 4          | 14.0             | 7.00          |
| SEA-LION Pile - Chinese               | 12.0              | 1          | 12.0             | 6.00          |
| Wiki* + News* - Vietnamese            | 2.4               | 4          | 9.4              | 4.70          |
| VinBigData - Vietnamese               | 2.1               | 4          | 8.2              | 4.10          |
| SEA-LION Pile - Vietnamese            | 8.4               | 1          | 8.4              | 4.20          |
| Wiki* + News* - Indonesian            | 1.3               | 4          | 5.2              | 2.60          |
| SEA-LION Pile - Indonesian            | 20.8              | 1          | 20.8             | 10.40         |
| Wiki* + News* + WangChanBERTa - Thai  | 1.3               | 4          | 5.2              | 2.60          |
| SEA-LION Pile - Thai                  | 14.8              | 1          | 14.8             | 7.40          |
| Wiki* + News - Filipino               | 0.2               | 4          | 0.9              | 0.43          |
| SEA-LION Pile - Filipino              | 2.1               | 1          | 2.1              | 1.07          |
| Wiki* + News - Tamil                  | 0.1               | 4          | 0.3              | 0.14          |
| SEA-LION Pile - Tamil                 | 0.7               | 1          | 0.7              | 0.36          |
| Wiki* + News - Malay                  | 0.1               | 4          | 0.6              | 0.29          |
| SEA-LION Pile - Malay                 | 1.4               | 1          | 1.4              | 0.71          |
| Wiki* + News - Khmer                  | 0.1               | 4          | 0.3              | 0.17          |
| SEA-LION Pile - Khmer                 | 2.3               | 1          | 2.3              | 1.13          |
| Wiki* + News - Lao                    | 0.0               | 4          | 0.1              | 0.03          |
| SEA-LION Pile - Lao                   | 0.3               | 1          | 0.3              | 0.17          |
| Wiki* + News - Burmese                | 0.1               | 4          | 0.4              | 0.20          |
| SEA-LION Pile - Burmese               | 2.6               | 1          | 2.6              | 1.30          |


Note: 
- All token counts are counted using Gemma2 tokenizer
- Wiki* sources includes Wikipedia, Wiki Books, Wiki Source, Wiki Voyage and Fandom Wiki
- News* sources includes VOA, Global Voices, MediaCorp, VinBigData-News
- Tamil news is sourced with permission from [Seithi](https://seithi.mediacorp.sg/)

### Infrastructure
Llama3.1 8B CPT SEA-LIONv3 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:

| Training Details     | Llama3.1 8B CPT SEA-LIONv3 |
|----------------------|:------------------------:|
| SingTel HGX-100      |        8+1 instances     |
| Nvidia H100 80GB GPU |        64+8              |
| Training Duration    |        10 days           |

### Configuration
| HyperParameter    | Llama3.1 8B CPT SEA-LIONv3 |
|-------------------|:------------------------:|
| Precision         | bfloat16                 |
| Optimizer         | decoupled_adamw          |
| Scheduler         | weight_stable_decay      |
| Learning Rate     | 1.0e-5                   |
| Global Batch Size | 512                      |
| Micro Batch Size  | 1                        |

## The Team
Chan Adwin, Choa Esther, Cheng Nicholas, Huang Yuli, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Limkonchotiwat Peerat, Liu Bing Jie Darius, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Teng Walter, Yeo Yeow Tong, Yong Xianbin

## Acknowledgements
AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.

## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)

[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)

## Disclaimer
This is the repository for the base model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.

## References
### Thai Pre-Training Data Reference

```bibtex
@misc{lowphansirikul2021wangchanberta,
    title={WangchanBERTa: Pretraining transformer-based Thai Language Models},
    author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
    year={2021},
    eprint={2101.09635},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```