File size: 1,957 Bytes
c48d642 99f761d c48d642 99f761d c48d642 c0586a3 c48d642 c0586a3 99f761d c48d642 c0586a3 c48d642 c0586a3 c48d642 c0586a3 c48d642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral_instruct_generation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral_instruct_generation
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4281
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8896 | 1.0 | 17 | 0.6754 |
| 0.5429 | 2.0 | 34 | 0.4964 |
| 0.4271 | 3.0 | 51 | 0.4475 |
| 0.386 | 4.0 | 68 | 0.4246 |
| 0.3377 | 5.0 | 85 | 0.4118 |
| 0.3068 | 6.0 | 102 | 0.4102 |
| 0.29 | 7.0 | 119 | 0.4088 |
| 0.2638 | 8.0 | 136 | 0.4112 |
| 0.2424 | 9.0 | 153 | 0.4268 |
| 0.2317 | 10.0 | 170 | 0.4281 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |