aimarsg commited on
Commit
f525ddd
·
1 Parent(s): 26a166d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -19
README.md CHANGED
@@ -1,9 +1,8 @@
1
  ---
2
- license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
- - conll2003
7
  metrics:
8
  - precision
9
  - recall
@@ -16,24 +15,24 @@ model-index:
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
- name: conll2003
20
- type: conll2003
21
- config: conll2003
22
  split: train
23
- args: conll2003
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9338296112489661
28
  - name: Recall
29
  type: recall
30
- value: 0.9500168293503871
31
  - name: F1
32
  type: f1
33
- value: 0.9418536748143823
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9861364572908695
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +40,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # bert-finetuned-ner
43
 
44
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0587
47
- - Precision: 0.9338
48
- - Recall: 0.9500
49
- - F1: 0.9419
50
- - Accuracy: 0.9861
51
 
52
  ## Model description
53
 
@@ -78,9 +77,9 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0889 | 1.0 | 1756 | 0.0711 | 0.9132 | 0.9297 | 0.9214 | 0.9809 |
82
- | 0.0338 | 2.0 | 3512 | 0.0597 | 0.9315 | 0.9475 | 0.9394 | 0.9860 |
83
- | 0.0184 | 3.0 | 5268 | 0.0587 | 0.9338 | 0.9500 | 0.9419 | 0.9861 |
84
 
85
 
86
  ### Framework versions
 
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
5
+ - wikiann
6
  metrics:
7
  - precision
8
  - recall
 
15
  name: Token Classification
16
  type: token-classification
17
  dataset:
18
+ name: wikiann
19
+ type: wikiann
20
+ config: es
21
  split: train
22
+ args: es
23
  metrics:
24
  - name: Precision
25
  type: precision
26
+ value: 0.8655875585178132
27
  - name: Recall
28
  type: recall
29
+ value: 0.889079054604727
30
  - name: F1
31
  type: f1
32
+ value: 0.8771760543561292
33
  - name: Accuracy
34
  type: accuracy
35
+ value: 0.9432045651459472
36
  ---
37
 
38
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  # bert-finetuned-ner
42
 
43
+ This model was trained from scratch on the wikiann dataset.
44
  It achieves the following results on the evaluation set:
45
+ - Loss: 0.2685
46
+ - Precision: 0.8656
47
+ - Recall: 0.8891
48
+ - F1: 0.8772
49
+ - Accuracy: 0.9432
50
 
51
  ## Model description
52
 
 
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.245 | 1.0 | 2500 | 0.2470 | 0.8224 | 0.8577 | 0.8397 | 0.9303 |
81
+ | 0.1472 | 2.0 | 5000 | 0.2469 | 0.8651 | 0.8876 | 0.8762 | 0.9415 |
82
+ | 0.0965 | 3.0 | 7500 | 0.2685 | 0.8656 | 0.8891 | 0.8772 | 0.9432 |
83
 
84
 
85
  ### Framework versions