aimarsg commited on
Commit
e734aa9
·
1 Parent(s): 2ecccf5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -20
README.md CHANGED
@@ -1,8 +1,9 @@
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
5
- - wikiann
6
  metrics:
7
  - precision
8
  - recall
@@ -15,24 +16,24 @@ model-index:
15
  name: Token Classification
16
  type: token-classification
17
  dataset:
18
- name: wikiann
19
- type: wikiann
20
- config: es
21
- split: train
22
- args: es
23
  metrics:
24
  - name: Precision
25
  type: precision
26
- value: 0.8655875585178132
27
  - name: Recall
28
  type: recall
29
- value: 0.889079054604727
30
  - name: F1
31
  type: f1
32
- value: 0.8771760543561292
33
  - name: Accuracy
34
  type: accuracy
35
- value: 0.9432045651459472
36
  ---
37
 
38
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,13 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  # bert-finetuned-ner
42
 
43
- This model was trained from scratch on the wikiann dataset.
44
  It achieves the following results on the evaluation set:
45
- - Loss: 0.2685
46
- - Precision: 0.8656
47
- - Recall: 0.8891
48
- - F1: 0.8772
49
- - Accuracy: 0.9432
50
 
51
  ## Model description
52
 
@@ -77,14 +78,14 @@ The following hyperparameters were used during training:
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
- | 0.245 | 1.0 | 2500 | 0.2470 | 0.8224 | 0.8577 | 0.8397 | 0.9303 |
81
- | 0.1472 | 2.0 | 5000 | 0.2469 | 0.8651 | 0.8876 | 0.8762 | 0.9415 |
82
- | 0.0965 | 3.0 | 7500 | 0.2685 | 0.8656 | 0.8891 | 0.8772 | 0.9432 |
83
 
84
 
85
  ### Framework versions
86
 
87
- - Transformers 4.25.1
88
  - Pytorch 1.13.1+cu116
89
  - Datasets 2.8.0
90
  - Tokenizers 0.13.2
 
1
  ---
2
+ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
+ - xglue
7
  metrics:
8
  - precision
9
  - recall
 
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
+ name: xglue
20
+ type: xglue
21
+ config: ner
22
+ split: validation.es
23
+ args: ner
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.5184780231795321
28
  - name: Recall
29
  type: recall
30
+ value: 0.5445567294441892
31
  - name: F1
32
  type: f1
33
+ value: 0.5311974907583735
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.8905679788803479
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  # bert-finetuned-ner
43
 
44
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the xglue dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.8429
47
+ - Precision: 0.5185
48
+ - Recall: 0.5446
49
+ - F1: 0.5312
50
+ - Accuracy: 0.8906
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0782 | 1.0 | 1756 | 0.6432 | 0.4982 | 0.5420 | 0.5192 | 0.8972 |
82
+ | 0.039 | 2.0 | 3512 | 0.7474 | 0.4994 | 0.5496 | 0.5233 | 0.8908 |
83
+ | 0.0189 | 3.0 | 5268 | 0.8429 | 0.5185 | 0.5446 | 0.5312 | 0.8906 |
84
 
85
 
86
  ### Framework versions
87
 
88
+ - Transformers 4.26.0
89
  - Pytorch 1.13.1+cu116
90
  - Datasets 2.8.0
91
  - Tokenizers 0.13.2