File size: 1,754 Bytes
ef355c0
cf9141e
 
 
 
 
ef355c0
bc936e0
ef355c0
26c5685
ef355c0
bc936e0
ef355c0
bc936e0
 
 
 
ef355c0
bc936e0
ddbeacf
bc936e0
 
 
 
 
 
 
 
 
 
 
 
 
 
ef355c0
bc936e0
 
baba7fe
bc936e0
 
ef355c0
bc936e0
 
 
 
 
 
 
 
 
ef355c0
bc936e0
ef355c0
bc936e0
ef355c0
bc936e0
ef355c0
bc936e0
ef355c0
bc936e0
ef355c0
baba7fe
bc936e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
language:
- hi
pipeline_tag: automatic-speech-recognition
library_name: nemo
---
## IndicConformer

  IndicConformer is a Hybrid RNNT conformer model built for Hindi.

  ## AI4Bharat NeMo:

  To load, train, fine-tune or play with the model you will need to install [AI4Bharat NeMo](https://github.com/AI4Bharat/NeMo). We recommend you install it using the command shown below
  ```
  git clone https://github.com/AI4Bharat/NeMo.git && cd NeMo && git checkout nemo-v2 && bash reinstall.sh
  ```

  ## Usage

  ```bash
  $ python inference.py --help
  usage: inference.py [-h] -c CHECKPOINT -f AUDIO_FILEPATH -d (cpu,cuda) -l LANGUAGE_CODE
  options:
  -h, --help            show this help message and exit
  -c CHECKPOINT, --checkpoint CHECKPOINT
                          Path to .nemo file
  -f AUDIO_FILEPATH, --audio_filepath AUDIO_FILEPATH
                          Audio filepath
  -d (cpu,cuda), --device (cpu,cuda)
                          Device (cpu/gpu)
  -l LANGUAGE_CODE, --language_code LANGUAGE_CODE
                          Language Code (eg. hi)
  ```

  ## Example command
  ```
  python inference.py -c indicconformer_stt_hi_hybrid_rnnt_large.nemo -f hindi-16khz.wav -d cuda -l hi
  ```
  Expected output - 

  ```
  Loading model..
  ...
  Transcibing..
  ----------
  Transcript: 
  Took ** seconds.
  ----------
  ```

  ### Input

  This model accepts 16000 KHz Mono-channel Audio (wav files) as input.

  ### Output

  This model provides transcribed speech as a string for a given audio sample.

  ## Model Architecture

  This model is a conformer-Large model, consisting of 120M parameters, as the encoder, with a hybrid CTC-RNNT decoder. The model has 17 conformer blocks with
  512 as the model dimension.