Commit
·
57c6284
1
Parent(s):
eafa3e2
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,17 +31,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the silicone dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
-
- Micro-precision: 0.
|
37 |
-
- Micro-recall: 0.
|
38 |
-
- Micro-f1: 0.
|
39 |
-
- Macro-precision: 0.
|
40 |
-
- Macro-recall: 0.
|
41 |
-
- Macro-f1: 0.
|
42 |
-
- Weighted-precision: 0.
|
43 |
-
- Weighted-recall: 0.
|
44 |
-
- Weighted-f1: 0.
|
45 |
|
46 |
## Model description
|
47 |
|
@@ -66,14 +66,13 @@ The following hyperparameters were used during training:
|
|
66 |
- seed: 42
|
67 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
- lr_scheduler_type: linear
|
69 |
-
- num_epochs:
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
-
| Training Loss | Epoch | Step
|
74 |
-
|
75 |
-
| 0.
|
76 |
-
| 0.8243 | 2.0 | 11920 | 0.8735 | 0.7251 | 0.7251 | 0.7251 | 0.7251 | 0.4896 | 0.4091 | 0.4149 | 0.6970 | 0.7251 | 0.6990 |
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.7137067059690494
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the silicone dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.9634
|
35 |
+
- Accuracy: 0.7137
|
36 |
+
- Micro-precision: 0.7137
|
37 |
+
- Micro-recall: 0.7137
|
38 |
+
- Micro-f1: 0.7137
|
39 |
+
- Macro-precision: 0.3472
|
40 |
+
- Macro-recall: 0.2856
|
41 |
+
- Macro-f1: 0.2791
|
42 |
+
- Weighted-precision: 0.6730
|
43 |
+
- Weighted-recall: 0.7137
|
44 |
+
- Weighted-f1: 0.6783
|
45 |
|
46 |
## Model description
|
47 |
|
|
|
66 |
- seed: 42
|
67 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
- lr_scheduler_type: linear
|
69 |
+
- num_epochs: 1
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
|
74 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
75 |
+
| 0.9579 | 1.0 | 2980 | 0.9634 | 0.7137 | 0.7137 | 0.7137 | 0.7137 | 0.3472 | 0.2856 | 0.2791 | 0.6730 | 0.7137 | 0.6783 |
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|