File size: 2,074 Bytes
529bb24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 0.50-200Train-100Test-vit-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.50-200Train-100Test-vit-base
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7055
- Accuracy: 0.8140
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.9228 | 0.9931 | 36 | 1.4677 | 0.5921 |
| 0.5728 | 1.9862 | 72 | 0.7717 | 0.7721 |
| 0.2216 | 2.9793 | 108 | 0.6836 | 0.7930 |
| 0.052 | 4.0 | 145 | 0.6623 | 0.8052 |
| 0.0145 | 4.9931 | 181 | 0.7002 | 0.7991 |
| 0.0075 | 5.9862 | 217 | 0.6851 | 0.8131 |
| 0.0059 | 6.9793 | 253 | 0.6920 | 0.8166 |
| 0.0045 | 8.0 | 290 | 0.6996 | 0.8140 |
| 0.004 | 8.9931 | 326 | 0.7044 | 0.8140 |
| 0.0042 | 9.9310 | 360 | 0.7055 | 0.8140 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|