ahmed-masry commited on
Commit
af87300
·
verified ·
1 Parent(s): 5c2a21e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -3,10 +3,11 @@ license: gpl-3.0
3
  language:
4
  - en
5
  ---
6
- # TL;DR
7
- **ChartInstruct: Instruction Tuning for Chart Comprehension and Reasoning**
8
 
9
  Venue: **ACL 2024 (Findings)**
 
10
  Paper Link: https://arxiv.org/abs/2403.09028
11
 
12
  The abstract of the paper states that:
@@ -14,12 +15,12 @@ The abstract of the paper states that:
14
  # Web Demo
15
  If you wish to quickly try our model, you can access our public web demo hosted on the Hugging Face Spaces platform with a friendly interface!
16
 
17
- [ChartInstruct-Llama2 Web Demo](https://huggingface.co/spaces/ahmed-masry/UniChart-Base) |
18
 
19
  # Inference
20
  You can easily use our models for inference with the huggingface library!
21
  You just need to do the following:
22
- 1. Chage the _imag_path_ to your chart example image path on your system
23
  2. Write the _input_text_.
24
 
25
  ```
@@ -32,8 +33,8 @@ torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQ
32
 
33
  image_path = "/content/chart_example_1.png"
34
  input_text = "Question: What is the share of respondants who prefer Whatsapp in the 18-29 age group?"
35
- input_prompt = f"<image>\n Question: {input_text} Answer: "
36
 
 
37
 
38
  model = LlavaForConditionalGeneration.from_pretrained("ahmed-masry/ChartInstruct-LLama2", torch_dtype=torch.float16)
39
  processor = AutoProcessor.from_pretrained("ahmed-masry/ChartInstruct-LLama2")
 
3
  language:
4
  - en
5
  ---
6
+
7
+ # ChartInstruct: Instruction Tuning for Chart Comprehension and Reasoning
8
 
9
  Venue: **ACL 2024 (Findings)**
10
+
11
  Paper Link: https://arxiv.org/abs/2403.09028
12
 
13
  The abstract of the paper states that:
 
15
  # Web Demo
16
  If you wish to quickly try our model, you can access our public web demo hosted on the Hugging Face Spaces platform with a friendly interface!
17
 
18
+ [ChartInstruct-Llama2 Web Demo](https://huggingface.co/spaces/ahmed-masry/UniChart-Base)
19
 
20
  # Inference
21
  You can easily use our models for inference with the huggingface library!
22
  You just need to do the following:
23
+ 1. Chage the _image_path_ to your chart example image path on your system
24
  2. Write the _input_text_.
25
 
26
  ```
 
33
 
34
  image_path = "/content/chart_example_1.png"
35
  input_text = "Question: What is the share of respondants who prefer Whatsapp in the 18-29 age group?"
 
36
 
37
+ input_prompt = f"<image>\n Question: {input_text} Answer: "
38
 
39
  model = LlavaForConditionalGeneration.from_pretrained("ahmed-masry/ChartInstruct-LLama2", torch_dtype=torch.float16)
40
  processor = AutoProcessor.from_pretrained("ahmed-masry/ChartInstruct-LLama2")