Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +27 -27
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.69 +/- 10.91
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7d424a9f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7d424a9fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7d424aa050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7d424aa0e0>", "_build": "<function ActorCriticPolicy._build at 0x7c7d424aa170>", "forward": "<function ActorCriticPolicy.forward at 0x7c7d424aa200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7d424aa290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7d424aa320>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7d424aa3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7d424aa440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7d424aa4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7d424aa560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7d424495c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728493725398785015, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOP+rvpTLU/skZGv2LOeT5NRxE8a6YzPgAAAAAAAAAAmvByPURA1z0JQwe+kDuRvsYxN71ZWaS9AAAAAAAAAACG8mo+48nfPr4Yn76EmL6+6fLjPA97BL4AAAAAAAAAAABkTr1pm1a8FkOQO/IstDyKPb69fk2RPQAAgD8AAIA/5hdKvbS9jD9e+gK+BS8Jv4L9kb1VWvO9AAAAAAAAAADNWC49z10xPh8DPL0Un2C+eg/XvOVAlj0AAAAAAAAAAGZgC7z2oB26yw7EM8Bh/S610HK7cV3HswAAgD8AAIA/5njIvVsehj7C+Ao+K/Juvgc+aT3uNtW6AAAAAAAAAABAq0E+dtttPwXosD7hXQS/F1dwPuoAFD4AAAAAAAAAAEDDnz4SZVc/8uEWPmemCr+UwdU+afm+vAAAAAAAAAAAZkd2vsjKHD/WU2w+Y2iivlzQgr7eomc+AAAAAAAAAACaIAO9ItEaPj+dnL2zBHS+dXnbvQgp5jsAAAAAAAAAAGalHL2hi8E9syEQvjkib745Fwa+mEprPQAAAAAAAAAAkK2kPmqgVz9gFvc9MdkDv0JRyz4Zzcu9AAAAAAAAAADNkI68rt2culZ3VDRNiqsvw8xlOu2DeLMAAIA/AACAPwDyNryv6Ts93jvvPaSPSr5RDZk9214GvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDGRXKbKA+MAWyUS+iMAXSUR0CT2/dPLxI8dX2UKGgGR0BwyOr4nF5waAdNNwFoCEdAk91kAggX/HV9lChoBkdAcvR+evpyImgHTQMBaAhHQJPdwOJ+Dvp1fZQoaAZHQG/WQgDA8CBoB00RAWgIR0CT3nOPeYUndX2UKGgGR0Bv05y8zyjIaAdL+mgIR0CT3u6MBIWhdX2UKGgGR0BtRb7ZWaMKaAdN0wJoCEdAk9+GCiAUcnV9lChoBkdAc1sIFvAGjmgHTWABaAhHQJPgGnjyWiV1fZQoaAZHQHAXiaVlf7doB00UAWgIR0CT4FeSjgyedX2UKGgGR0BxmpytFKChaAdNYgFoCEdAk+CxGH58B3V9lChoBkdAcTMglnh86WgHTQ0BaAhHQJPhZ54W1tx1fZQoaAZHQHJ0j2alUIdoB0vsaAhHQJPhvyxzJZJ1fZQoaAZHQHNoiWJJoTRoB01AAWgIR0CT4mQ/X5FgdX2UKGgGR0Bza1tJnQIEaAdNAwFoCEdAk+MnsXzlLnV9lChoBkdAcn9JwbVBlmgHS/1oCEdAk+NyM5wOv3V9lChoBkdAcjoKoQ4CIWgHTUMBaAhHQJPjjg2qDK51fZQoaAZHQHHuDBRAKOVoB01CAWgIR0CT5DA/cFhYdX2UKGgGR0Bx/b5nDiwTaAdL6mgIR0CT5NnZkCmudX2UKGgGR0By2FIPK+zuaAdNAwFoCEdAk+VV63RXwXV9lChoBkdAcoh76YVqOGgHS+doCEdAk+WI1tO2zHV9lChoBkdAccHep4rz5GgHTQcBaAhHQJPnLUaya/h1fZQoaAZHQHCpg62fChxoB0vpaAhHQJPnwPI4lyB1fZQoaAZHQHDXimygPEtoB0v6aAhHQJPoERChN/R1fZQoaAZHQHPQLoSteUpoB00pAWgIR0CT6RUgB91EdX2UKGgGR0Bui29vjwQUaAdL+WgIR0CT6di3ocJddX2UKGgGR0Bsa9e4TbnHaAdNFwFoCEdAk+oL70nPV3V9lChoBkdAcChRgZ0jkmgHS+RoCEdAk+p3vH93r3V9lChoBkdAcLhl7tzCDWgHTRsBaAhHQJPrrze40/J1fZQoaAZHQG/SvqkdmxtoB0v9aAhHQJPtELgGbCt1fZQoaAZHQG+NbVJ+UhVoB00QAWgIR0CT7Ux9XtBwdX2UKGgGR0BxvQb5uZTiaAdL+mgIR0CT7bMPSUkfdX2UKGgGR0BtQwKUmlZYaAdL/GgIR0CT7vPPcBU8dX2UKGgGR0BwB7Hp8neBaAdNOAFoCEdAk+8BDohY/3V9lChoBkdAb+Q1TBInSmgHTSMBaAhHQJPvgN7SiM51fZQoaAZHQHEx0x20Re1oB00pAWgIR0CT8AZfD1oQdX2UKGgGR0By/d9Aood/aAdNDQFoCEdAk/DANCqp+HV9lChoBkdAcoufhMrVfGgHTQYBaAhHQJPxAyeqaPV1fZQoaAZHQHBn2C7K7qZoB0v5aAhHQJPyRGDtgKF1fZQoaAZHQG+TEqMFUyZoB00kAWgIR0CT8x16E8JVdX2UKGgGR0BxdL3PAwfyaAdNFgFoCEdAlASZIpYs/nV9lChoBkdAWcn09QoCuGgHTegDaAhHQJQFd8iOeat1fZQoaAZHQHETiYXwb2loB00TAWgIR0CUBZic5Ke1dX2UKGgGR0BtogdS2phnaAdNcQFoCEdAlAWnl8w6AHV9lChoBkdAcrPIKtxMnWgHTUMBaAhHQJQFxEjPfKp1fZQoaAZHQHE1jiOvMbFoB0v7aAhHQJQGBqpLmIV1fZQoaAZHQHG9AtJ4B3loB00AAWgIR0CUBnmV7hNudX2UKGgGR0Bwo8z0pVjqaAdNEAFoCEdAlAaAfQrtmnV9lChoBkdAcJnrIHTqjmgHS+toCEdAlAbi/CZWrHV9lChoBkdAcqpG47Rv32gHS+5oCEdAlAflqi48U3V9lChoBkdAcHjHMUypJmgHTQcBaAhHQJQICzJIUah1fZQoaAZHQHMP+aWom5VoB00aAWgIR0CUCBJv5xiodX2UKGgGR0BybY7zTWoWaAdL+mgIR0CUCLPX05EMdX2UKGgGR0ByfQvWYnfEaAdNEwFoCEdAlAmB0ZFXrHV9lChoBkdAcJXoakyk9GgHS/toCEdAlAntMXaakXV9lChoBkdAcw+S6UaAF2gHTQ4BaAhHQJQLLqTr3TN1fZQoaAZHQHAvlgQYk3VoB0v/aAhHQJQMHamGdqd1fZQoaAZHQG+S9NN8E3doB00JAWgIR0CUDEszl90BdX2UKGgGR0By1NrpJPIoaAdL+WgIR0CUDGcQiA2AdX2UKGgGR0ByygjOcDr7aAdNKQFoCEdAlAx8CDEm6XV9lChoBkdAby/bCaZx72gHTSsBaAhHQJQNYZdfLLZ1fZQoaAZHQHEgVU6xPftoB00rAWgIR0CUDYBWPtD2dX2UKGgGR0BxIE53kgfVaAdNEgFoCEdAlA2I4Qz1snV9lChoBkdAc2ie40/GEWgHTSEBaAhHQJQN3huO0b91fZQoaAZHQG325oXbdrRoB0vwaAhHQJQOTEk0Jnh1fZQoaAZHQG63XcgyM1loB0v/aAhHQJQOhiSaEzx1fZQoaAZHQHBaITbnHNpoB00VAWgIR0CUDzX/o7mudX2UKGgGR0BxK/uF6AvtaAdNDwFoCEdAlA/TB68g6nV9lChoBkdAdErFhoduHmgHTQ0BaAhHQJQSRnoPkJd1fZQoaAZHQHIKX9Nvfj1oB02UAWgIR0CUEm+irT6SdX2UKGgGR0BueJlpXZGsaAdL72gIR0CUErkmQbMpdX2UKGgGR0BzH51W8yvcaAdNMAFoCEdAlBLOhkAggXV9lChoBkdAcDtN0eU6gmgHS91oCEdAlBNP38GcF3V9lChoBkdAcd4hgVoHs2gHS/JoCEdAlBObFOwgT3V9lChoBkdAcVnYNy5qd2gHS/poCEdAlBP0U47zTXV9lChoBkdAc0CA6dUbUGgHS+9oCEdAlBSv47A+IXV9lChoBkdAcMD3z+WGAWgHS+xoCEdAlBS3TEzfrXV9lChoBkdAcQ6TCcf/3mgHS+JoCEdAlBVFinYQKHV9lChoBkdAcTVzwMH8j2gHTQEBaAhHQJQVo32mHgx1fZQoaAZHQHJ4pB1LamJoB00RAWgIR0CUFbEy+HrRdX2UKGgGR0BvK+WdEsreaAdNQAFoCEdAlBXlEiMYM3V9lChoBkdAb/XpnHvMKWgHTSMBaAhHQJQXepn6Eal1fZQoaAZHQG+cSk0rK/5oB00XAWgIR0CUGAybQTmGdX2UKGgGR0Bxu7CWNWELaAdNBAFoCEdAlBhCsS00FnV9lChoBkdAbP39bX6InGgHS+9oCEdAlBlnJLdvbXV9lChoBkdAcoXNQTEiuGgHS+doCEdAlBl1/MGHHnV9lChoBkdAbNOTdLxqf2gHTRcBaAhHQJQaptQ9A5d1fZQoaAZHQG3Pzx5LRKJoB00bAWgIR0CUG4vFm4AkdX2UKGgGR0Byxkjqv/zbaAdNCgFoCEdAlBu4PCl7+nV9lChoBkdAcJaogV45cWgHTQEBaAhHQJQdk8bJfY11fZQoaAZHQHIveLrHEMtoB00GAWgIR0CUHdZoPCl8dX2UKGgGR0BzJvklu3tsaAdL+GgIR0CUHrnXNC7cdX2UKGgGR0BxCopgCwKTaAdL/2gIR0CUHyLWZqmCdX2UKGgGR0ByNRpztCzDaAdNTQFoCEdAlB+Yp2ECeXV9lChoBkdAcdB6zVtoBmgHTWABaAhHQJQfzGBFuvV1fZQoaAZHQFOobONYKY1oB0vBaAhHQJQhD9R77bd1fZQoaAZHQHDs22b5M11oB01RAWgIR0CUIbJtSAH3dX2UKGgGR0ByI8mShakiaAdNRgFoCEdAlCI6iO/+KnV9lChoBkdAcp75B1LamGgHTQsBaAhHQJQibxSYPXl1fZQoaAZHQHC+kpqh11ZoB00aAWgIR0CUIvlYEGJOdX2UKGgGR0BzHvel9BrvaAdNNwFoCEdAlCMkleF+NXV9lChoBkdAcmFlsP8Q7WgHTSABaAhHQJQkAA0bcXZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a72b4212440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a72b42124d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a72b4212560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a72b42125f0>", "_build": "<function ActorCriticPolicy._build at 0x7a72b4212680>", "forward": "<function ActorCriticPolicy.forward at 0x7a72b4212710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a72b42127a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a72b4212830>", "_predict": "<function ActorCriticPolicy._predict at 0x7a72b42128c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a72b4212950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a72b42129e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a72b4212a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a72b41be400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3309568, "_total_timesteps": 3306800, "_num_timesteps_at_start": 3276800, "seed": 42, "action_noise": null, "start_time": 1728588911522104398, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqnPL4vxdc+198cPq+BKb83S1q+u+A8PgAAAAAAAAAA5jofPmOWej++ipk+R7VQv1UWlj7nwwQ+AAAAAAAAAABaXYW9hty6Pzq1+75bVww9pE9pvSNRj74AAAAAAAAAABpyJD0Bhoq8gEoovrMO1b2TNac8xTaCPgAAgD8AAIA/7ZxtPpoq5z6sV7e+dH0Wv5AAVj7WRJK+AAAAAAAAAADNEIy7KRcJvG9Onj3lirU8RRRavQctlj0AAIA/AACAPwDbjb301om8i8r+PcZwMT0/1cS9nnImPAAAgD8AAIA/AJh/OxtzwD9+twQ6LRW/vHJ8i7wyHoc9AAAAAAAAAAAzxNu8L0xTPQwXhz7W3qK+dxEpPlUiGz0AAAAAAAAAAJrx0zzhfJK6Trkos1Licq8qE0E6EvHKMwAAgD8AAIA/MwvaPRZ5PD1bZzW/zQ2RvmKWCD2AXbK+AAAAAAAAAAAA0oI8qY4fP4JWn7sk61u/FLChPM46qrsAAAAAAAAAAM0iUjzDhXO65AK6Pc98Krbn9PW6AAgktQAAgD8AAIA/jeWSveFoqbo6X7m97ypXNY2Q6Djj3L20AACAPwAAgD/TQRe+FcBIPstL+z6ZV6O+G6vbPc8iOT4AAAAAAAAAACZ1K77rr/Y9OKLPPsKQyL7B3KC84mRiPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0008370630216523178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMYIOhCdBmMAWyUS9CMAXSUR0C9z0lpCa7VdX2UKGgGR0Bxkc7KaG5+aAdLu2gIR0C9z01wLmZFdX2UKGgGR0BwSED4gzP9aAdLpGgIR0C9z1DnJT2ndX2UKGgGR0ByrKcEvCdjaAdLxmgIR0C9z3UgW8AadX2UKGgGR0By/+6RQrMDaAdLsGgIR0C9z3gPVd5ZdX2UKGgGR0BymRk4FRpDaAdLzGgIR0C9z4Qi7kGSdX2UKGgGR0By7q0Xxe9jaAdL/GgIR0C9z4XbAUL2dX2UKGgGR0BxMZMM7U5NaAdLt2gIR0C9z6Ih2W6cdX2UKGgGR0BxjjRD1GsnaAdLxWgIR0C9z8NlRP43dX2UKGgGR0BzqLiS7oStaAdL2GgIR0C9z9M50bLmdX2UKGgGR0Bw++cWj45+aAdLy2gIR0C9z/Bf0EowdX2UKGgGR0BlKAV9F4LUaAdN6ANoCEdAvc/ys8xKx3V9lChoBkdAc8Krt3OfNGgHS8poCEdAvdAOPRzBAXV9lChoBkdAcE9z/p+tsGgHS8VoCEdAvdbl6Rhc7nV9lChoBkdAcZm2UjcEeWgHS7toCEdAvdb4y/KyOnV9lChoBkdAcKN7XxvvSmgHS7NoCEdAvddwvSMLnnV9lChoBkdAcWHbnHNorWgHS8hoCEdAvdeYlY2bX3V9lChoBkdAc99lByCFsmgHS7toCEdAvdebL3bmEHV9lChoBkdAcfPbsniNsGgHS8BoCEdAvdes5Jbt7nV9lChoBkdAcaJcUuctoWgHS7toCEdAvdgramGdqnV9lChoBkdAc4fGIsRQJ2gHS71oCEdAvdhV/y5I6XV9lChoBkdAcTBGMn7YTWgHS5ZoCEdAvdhXvQWvbHV9lChoBkdAce0/Tb349GgHS7toCEdAvdhw/SpiqnV9lChoBkdAcb0dAPd2xWgHS71oCEdAvdh0vN/vv3V9lChoBkdAcuNTYukDZGgHS5poCEdAvdiLM5fdAXV9lChoBkdAcVnkmQbMo2gHS81oCEdAvdkSXTmW+3V9lChoBkdAcTAOAiFCcGgHS7JoCEdAvdmalhw2l3V9lChoBkdAcS4YU34sVmgHS81oCEdAvdoO1v2oN3V9lChoBkdAcolZ/kNnXmgHS6RoCEdAvdo4CvHLinV9lChoBkdAc7bmTTvy9WgHS9ZoCEdAvdpn889wFXV9lChoBkdAcktCHARChWgHS5toCEdAvdqcJ/oaDXV9lChoBkdAcm2WTHKfWmgHS5doCEdAvdqyxRl6JXV9lChoBkdAco/F/hESd2gHS8hoCEdAvdq3Dcdo4HV9lChoBkdAcMNgvDgqE2gHS7toCEdAvdsN7jT8YXV9lChoBkdAc7KCDEm6XmgHS8RoCEdAvds7mxMWXXV9lChoBkdAcRHYI0IkaGgHS7doCEdAvdtNrDZUUHV9lChoBkdAckjPf8/D+GgHS7doCEdAvdtZijL0SXV9lChoBkdAcrHR4QjD9GgHS79oCEdAvdtjMhX8wnV9lChoBkdAcxYExqO94GgHS8toCEdAvdt4hY/3WXV9lChoBkdAchvKPn0TUWgHS8hoCEdAvduVic5Ke3V9lChoBkdAc4FJYDDCQGgHS9FoCEdAvdubeizsyHV9lChoBkdAcBmwblzU7WgHS6NoCEdAvdvZr433pXV9lChoBkdAchd32VVxTGgHS95oCEdAvdwH5N47inV9lChoBkdAb8zv+fh/AmgHS9FoCEdAvdwMUzsQd3V9lChoBkdAcOqT/hl182gHS65oCEdAvdwTHNorWnV9lChoBkdAcmdclgMMJGgHS7RoCEdAvdxUA93bEnV9lChoBkdAS2sHObAk9mgHS39oCEdAvdxuWkadc3V9lChoBkdAc4bsguAZsWgHS8BoCEdAvdynpQk5ZXV9lChoBkdAcrEGKhtcfWgHS81oCEdAvdyynUDuB3V9lChoBkdAc9AxPfsNUmgHS89oCEdAvdzCJXQtz3V9lChoBkdAcVXM1TBInWgHS5doCEdAvdzMJng5znV9lChoBkdAcQKq6OHWSWgHS59oCEdAvdzLrTpgTnV9lChoBkdAcqONucc2i2gHS7ZoCEdAvd0MfEGZ/nV9lChoBkdAbj6MH8jzI2gHS9doCEdAvd0m6+WWyHV9lChoBkdAchrUjs2NvWgHS89oCEdAvd0oolUp/nV9lChoBkdAcRWkJKJ2uGgHS6ZoCEdAvd1HdoFmnXV9lChoBkdAcZQ5FgDzRWgHS8BoCEdAvd1IgDA8CHV9lChoBkdAcUNaXrt3OmgHS75oCEdAvd2aNMoMKHV9lChoBkdAc7N2dupCKWgHS9ZoCEdAvd3POW0JGHV9lChoBkdAc9PVUMoc72gHTQ4BaAhHQL3d1wblzU91fZQoaAZHQHMtJNXYDkloB0vRaAhHQL3eAUMXrMV1fZQoaAZHQHLLlmvnr6doB0v0aAhHQL3eAwQUYbd1fZQoaAZHQHLUUrXlKbtoB0vcaAhHQL3eBXu3MIN1fZQoaAZHQHA/vJNj9XNoB0uyaAhHQL3eCTrE9+x1fZQoaAZHQHGXh59mYjVoB0uxaAhHQL3eFW8h9st1fZQoaAZHQHHW68g6ltVoB0vOaAhHQL3eOd4Vym11fZQoaAZHQHEsbEk0JnhoB0u/aAhHQL3eQlCkXUJ1fZQoaAZHQHG7hrnDBM1oB0vIaAhHQL3eVxLCemN1fZQoaAZHQHJMJKjBVMpoB0vFaAhHQL3equdwvQF1fZQoaAZHQHQ34B3iaRZoB0vXaAhHQL3etEvkBCF1fZQoaAZHQHL2YSlFc6hoB0vSaAhHQL3ewm8M/hV1fZQoaAZHQHOF8Nx2jfxoB0vHaAhHQL3exbPQfIV1fZQoaAZHQHETPgJkXk5oB0uoaAhHQL3e2sZHd451fZQoaAZHQHJNHxvvSc9oB0vcaAhHQL3e6ioKlYV1fZQoaAZHQEDF5jYqXnhoB0tpaAhHQL3e/iwjdHl1fZQoaAZHQHBqjvAoG6hoB0uoaAhHQL3fDyhBZ6l1fZQoaAZHQHHY5jH4oJBoB0ufaAhHQL3fLF9roGJ1fZQoaAZHQHOQ8VYZEUloB0vCaAhHQL3fQIi1Rch1fZQoaAZHQHMChQJokAxoB0uwaAhHQL3fWw1ivxJ1fZQoaAZHQHM2EyLyc1BoB0u+aAhHQL3fbU2kzoF1fZQoaAZHQHI6QDV6NVBoB0vGaAhHQL3femAbyYp1fZQoaAZHQHEReXJHRTloB0u7aAhHQL3fe9C/oJR1fZQoaAZHQHQS3o9s7+1oB0vBaAhHQL3fn96C17Z1fZQoaAZHQHLIsz2vjfhoB0vHaAhHQL3fwJqIrOJ1fZQoaAZHQHDFtMGorFxoB0udaAhHQL3f1H0btJF1fZQoaAZHQHDE9bs4T9NoB0u0aAhHQL3gEH1vl2h1fZQoaAZHQHDrNeY2Kl5oB0uvaAhHQL3gNQwK0D51fZQoaAZHQHJKJaJQ+EBoB0vaaAhHQL3gSmY0EYB1fZQoaAZHQG/vLNnoPkJoB0vPaAhHQL3gTX2ugYh1fZQoaAZHQHFg9FWn0kJoB0uZaAhHQL3gV55Z8rt1fZQoaAZHQHO1C83++/RoB0vIaAhHQL3gXRFI/aB1fZQoaAZHQHJxa4YrJ8xoB0uVaAhHQL3gYq+8Gs51fZQoaAZHQHKufSQYDT1oB0vHaAhHQL3gfTAWSEF1fZQoaAZHQHOvVM23rlhoB0u9aAhHQL3gf7tzCDV1fZQoaAZHQHFX14cFQl9oB0ukaAhHQL3giogV45d1fZQoaAZHQHJDm8ujASFoB0uyaAhHQL3grSyt3fR1fZQoaAZHQHIZdGd7OVxoB0ucaAhHQL3g3aTOgQJ1fZQoaAZHQHJVpkXk5p9oB0vHaAhHQL3g4VVxS511fZQoaAZHQHDrH4Glhw5oB0unaAhHQL3hC3yI55t1fZQoaAZHQHPVI/Vy3kRoB0vjaAhHQL3hGWw/xDt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3232, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVwgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEcgKhmidfLysKo95mGdPpM4AjANpbmOUihH/qyWN4vLKZm5BqMk2VFD6AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:138bd8f03a24743306a69e262a49c24b0069e9f384d54b4522c47e85c8710d0c
|
3 |
+
size 147775
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,62 +4,62 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
-
"_num_timesteps_at_start":
|
27 |
-
"seed":
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"n_steps": 1024,
|
56 |
"gamma": 0.999,
|
57 |
"gae_lambda": 0.98,
|
58 |
"ent_coef": 0.01,
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
-
"batch_size":
|
62 |
-
"n_epochs":
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
@@ -84,12 +84,12 @@
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
-
":serialized:": "
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
91 |
"dtype": "int64",
|
92 |
-
"_np_random":
|
93 |
},
|
94 |
"n_envs": 16,
|
95 |
"lr_schedule": {
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a72b4212440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a72b42124d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a72b4212560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a72b42125f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a72b4212680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a72b4212710>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a72b42127a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a72b4212830>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a72b42128c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a72b4212950>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a72b42129e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a72b4212a70>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a72b41be400>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3309568,
|
25 |
+
"_total_timesteps": 3306800,
|
26 |
+
"_num_timesteps_at_start": 3276800,
|
27 |
+
"seed": 42,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1728588911522104398,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqnPL4vxdc+198cPq+BKb83S1q+u+A8PgAAAAAAAAAA5jofPmOWej++ipk+R7VQv1UWlj7nwwQ+AAAAAAAAAABaXYW9hty6Pzq1+75bVww9pE9pvSNRj74AAAAAAAAAABpyJD0Bhoq8gEoovrMO1b2TNac8xTaCPgAAgD8AAIA/7ZxtPpoq5z6sV7e+dH0Wv5AAVj7WRJK+AAAAAAAAAADNEIy7KRcJvG9Onj3lirU8RRRavQctlj0AAIA/AACAPwDbjb301om8i8r+PcZwMT0/1cS9nnImPAAAgD8AAIA/AJh/OxtzwD9+twQ6LRW/vHJ8i7wyHoc9AAAAAAAAAAAzxNu8L0xTPQwXhz7W3qK+dxEpPlUiGz0AAAAAAAAAAJrx0zzhfJK6Trkos1Licq8qE0E6EvHKMwAAgD8AAIA/MwvaPRZ5PD1bZzW/zQ2RvmKWCD2AXbK+AAAAAAAAAAAA0oI8qY4fP4JWn7sk61u/FLChPM46qrsAAAAAAAAAAM0iUjzDhXO65AK6Pc98Krbn9PW6AAgktQAAgD8AAIA/jeWSveFoqbo6X7m97ypXNY2Q6Djj3L20AACAPwAAgD/TQRe+FcBIPstL+z6ZV6O+G6vbPc8iOT4AAAAAAAAAACZ1K77rr/Y9OKLPPsKQyL7B3KC84mRiPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0008370630216523178,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMYIOhCdBmMAWyUS9CMAXSUR0C9z0lpCa7VdX2UKGgGR0Bxkc7KaG5+aAdLu2gIR0C9z01wLmZFdX2UKGgGR0BwSED4gzP9aAdLpGgIR0C9z1DnJT2ndX2UKGgGR0ByrKcEvCdjaAdLxmgIR0C9z3UgW8AadX2UKGgGR0By/+6RQrMDaAdLsGgIR0C9z3gPVd5ZdX2UKGgGR0BymRk4FRpDaAdLzGgIR0C9z4Qi7kGSdX2UKGgGR0By7q0Xxe9jaAdL/GgIR0C9z4XbAUL2dX2UKGgGR0BxMZMM7U5NaAdLt2gIR0C9z6Ih2W6cdX2UKGgGR0BxjjRD1GsnaAdLxWgIR0C9z8NlRP43dX2UKGgGR0BzqLiS7oStaAdL2GgIR0C9z9M50bLmdX2UKGgGR0Bw++cWj45+aAdLy2gIR0C9z/Bf0EowdX2UKGgGR0BlKAV9F4LUaAdN6ANoCEdAvc/ys8xKx3V9lChoBkdAc8Krt3OfNGgHS8poCEdAvdAOPRzBAXV9lChoBkdAcE9z/p+tsGgHS8VoCEdAvdbl6Rhc7nV9lChoBkdAcZm2UjcEeWgHS7toCEdAvdb4y/KyOnV9lChoBkdAcKN7XxvvSmgHS7NoCEdAvddwvSMLnnV9lChoBkdAcWHbnHNorWgHS8hoCEdAvdeYlY2bX3V9lChoBkdAc99lByCFsmgHS7toCEdAvdebL3bmEHV9lChoBkdAcfPbsniNsGgHS8BoCEdAvdes5Jbt7nV9lChoBkdAcaJcUuctoWgHS7toCEdAvdgramGdqnV9lChoBkdAc4fGIsRQJ2gHS71oCEdAvdhV/y5I6XV9lChoBkdAcTBGMn7YTWgHS5ZoCEdAvdhXvQWvbHV9lChoBkdAce0/Tb349GgHS7toCEdAvdhw/SpiqnV9lChoBkdAcb0dAPd2xWgHS71oCEdAvdh0vN/vv3V9lChoBkdAcuNTYukDZGgHS5poCEdAvdiLM5fdAXV9lChoBkdAcVnkmQbMo2gHS81oCEdAvdkSXTmW+3V9lChoBkdAcTAOAiFCcGgHS7JoCEdAvdmalhw2l3V9lChoBkdAcS4YU34sVmgHS81oCEdAvdoO1v2oN3V9lChoBkdAcolZ/kNnXmgHS6RoCEdAvdo4CvHLinV9lChoBkdAc7bmTTvy9WgHS9ZoCEdAvdpn889wFXV9lChoBkdAcktCHARChWgHS5toCEdAvdqcJ/oaDXV9lChoBkdAcm2WTHKfWmgHS5doCEdAvdqyxRl6JXV9lChoBkdAco/F/hESd2gHS8hoCEdAvdq3Dcdo4HV9lChoBkdAcMNgvDgqE2gHS7toCEdAvdsN7jT8YXV9lChoBkdAc7KCDEm6XmgHS8RoCEdAvds7mxMWXXV9lChoBkdAcRHYI0IkaGgHS7doCEdAvdtNrDZUUHV9lChoBkdAckjPf8/D+GgHS7doCEdAvdtZijL0SXV9lChoBkdAcrHR4QjD9GgHS79oCEdAvdtjMhX8wnV9lChoBkdAcxYExqO94GgHS8toCEdAvdt4hY/3WXV9lChoBkdAchvKPn0TUWgHS8hoCEdAvduVic5Ke3V9lChoBkdAc4FJYDDCQGgHS9FoCEdAvdubeizsyHV9lChoBkdAcBmwblzU7WgHS6NoCEdAvdvZr433pXV9lChoBkdAchd32VVxTGgHS95oCEdAvdwH5N47inV9lChoBkdAb8zv+fh/AmgHS9FoCEdAvdwMUzsQd3V9lChoBkdAcOqT/hl182gHS65oCEdAvdwTHNorWnV9lChoBkdAcmdclgMMJGgHS7RoCEdAvdxUA93bEnV9lChoBkdAS2sHObAk9mgHS39oCEdAvdxuWkadc3V9lChoBkdAc4bsguAZsWgHS8BoCEdAvdynpQk5ZXV9lChoBkdAcrEGKhtcfWgHS81oCEdAvdyynUDuB3V9lChoBkdAc9AxPfsNUmgHS89oCEdAvdzCJXQtz3V9lChoBkdAcVXM1TBInWgHS5doCEdAvdzMJng5znV9lChoBkdAcQKq6OHWSWgHS59oCEdAvdzLrTpgTnV9lChoBkdAcqONucc2i2gHS7ZoCEdAvd0MfEGZ/nV9lChoBkdAbj6MH8jzI2gHS9doCEdAvd0m6+WWyHV9lChoBkdAchrUjs2NvWgHS89oCEdAvd0oolUp/nV9lChoBkdAcRWkJKJ2uGgHS6ZoCEdAvd1HdoFmnXV9lChoBkdAcZQ5FgDzRWgHS8BoCEdAvd1IgDA8CHV9lChoBkdAcUNaXrt3OmgHS75oCEdAvd2aNMoMKHV9lChoBkdAc7N2dupCKWgHS9ZoCEdAvd3POW0JGHV9lChoBkdAc9PVUMoc72gHTQ4BaAhHQL3d1wblzU91fZQoaAZHQHMtJNXYDkloB0vRaAhHQL3eAUMXrMV1fZQoaAZHQHLLlmvnr6doB0v0aAhHQL3eAwQUYbd1fZQoaAZHQHLUUrXlKbtoB0vcaAhHQL3eBXu3MIN1fZQoaAZHQHA/vJNj9XNoB0uyaAhHQL3eCTrE9+x1fZQoaAZHQHGXh59mYjVoB0uxaAhHQL3eFW8h9st1fZQoaAZHQHHW68g6ltVoB0vOaAhHQL3eOd4Vym11fZQoaAZHQHEsbEk0JnhoB0u/aAhHQL3eQlCkXUJ1fZQoaAZHQHG7hrnDBM1oB0vIaAhHQL3eVxLCemN1fZQoaAZHQHJMJKjBVMpoB0vFaAhHQL3equdwvQF1fZQoaAZHQHQ34B3iaRZoB0vXaAhHQL3etEvkBCF1fZQoaAZHQHL2YSlFc6hoB0vSaAhHQL3ewm8M/hV1fZQoaAZHQHOF8Nx2jfxoB0vHaAhHQL3exbPQfIV1fZQoaAZHQHETPgJkXk5oB0uoaAhHQL3e2sZHd451fZQoaAZHQHJNHxvvSc9oB0vcaAhHQL3e6ioKlYV1fZQoaAZHQEDF5jYqXnhoB0tpaAhHQL3e/iwjdHl1fZQoaAZHQHBqjvAoG6hoB0uoaAhHQL3fDyhBZ6l1fZQoaAZHQHHY5jH4oJBoB0ufaAhHQL3fLF9roGJ1fZQoaAZHQHOQ8VYZEUloB0vCaAhHQL3fQIi1Rch1fZQoaAZHQHMChQJokAxoB0uwaAhHQL3fWw1ivxJ1fZQoaAZHQHM2EyLyc1BoB0u+aAhHQL3fbU2kzoF1fZQoaAZHQHI6QDV6NVBoB0vGaAhHQL3femAbyYp1fZQoaAZHQHEReXJHRTloB0u7aAhHQL3fe9C/oJR1fZQoaAZHQHQS3o9s7+1oB0vBaAhHQL3fn96C17Z1fZQoaAZHQHLIsz2vjfhoB0vHaAhHQL3fwJqIrOJ1fZQoaAZHQHDFtMGorFxoB0udaAhHQL3f1H0btJF1fZQoaAZHQHDE9bs4T9NoB0u0aAhHQL3gEH1vl2h1fZQoaAZHQHDrNeY2Kl5oB0uvaAhHQL3gNQwK0D51fZQoaAZHQHJKJaJQ+EBoB0vaaAhHQL3gSmY0EYB1fZQoaAZHQG/vLNnoPkJoB0vPaAhHQL3gTX2ugYh1fZQoaAZHQHFg9FWn0kJoB0uZaAhHQL3gV55Z8rt1fZQoaAZHQHO1C83++/RoB0vIaAhHQL3gXRFI/aB1fZQoaAZHQHJxa4YrJ8xoB0uVaAhHQL3gYq+8Gs51fZQoaAZHQHKufSQYDT1oB0vHaAhHQL3gfTAWSEF1fZQoaAZHQHOvVM23rlhoB0u9aAhHQL3gf7tzCDV1fZQoaAZHQHFX14cFQl9oB0ukaAhHQL3giogV45d1fZQoaAZHQHJDm8ujASFoB0uyaAhHQL3grSyt3fR1fZQoaAZHQHIZdGd7OVxoB0ucaAhHQL3g3aTOgQJ1fZQoaAZHQHJVpkXk5p9oB0vHaAhHQL3g4VVxS511fZQoaAZHQHDrH4Glhw5oB0unaAhHQL3hC3yI55t1fZQoaAZHQHPVI/Vy3kRoB0vjaAhHQL3hGWw/xDt1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 3232,
|
55 |
"n_steps": 1024,
|
56 |
"gamma": 0.999,
|
57 |
"gae_lambda": 0.98,
|
58 |
"ent_coef": 0.01,
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 256,
|
62 |
+
"n_epochs": 16,
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWVwgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEcgKhmidfLysKo95mGdPpM4AjANpbmOUihH/qyWN4vLKZm5BqMk2VFD6AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
91 |
"dtype": "int64",
|
92 |
+
"_np_random": "Generator(PCG64)"
|
93 |
},
|
94 |
"n_envs": 16,
|
95 |
"lr_schedule": {
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daaff6821ac9e6c94fa2442126d8fdeaa368cdfcff379a5dabec5700b7cf5ae5
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e910038370d6d4376fb87ad5fbd819bb01ced11735da88dd3394238fa98f92a
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.4.1+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 276.69067297015584, "std_reward": 10.912380317033527, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-17T15:49:03.813459"}
|