ahmadRa's picture
dummy trial
dd90308
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f21a7225680>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21a7225710>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21a72257a0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21a7225830>",
"_build": "<function ActorCriticPolicy._build at 0x7f21a72258c0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f21a7225950>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21a72259e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f21a7225a70>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21a7225b00>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21a7225b90>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21a7225c20>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f21a71f9390>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAATYZpSjclNbA5hJl46EK63Sq6Yo4OMgegV6K98PuuO8vORJZ5lbeUTmyNvK/OYlgp4J7T5AFbBGpXcVroUJO8WIaAHxE8487C6cTPUPZX2UTdFD3I9FH7v8e6M3DwZV+TULHntiz3w+i8DGqRMEyslmJYPQtevOHKdSAW8+niC7DZbPqWXifGyNNkMoGc9VJQWonz7V2Ptc6m0iww07QpL3GpQdDxAYrQlXEkcWGAw7t0DaRUj+HPlbmeMrHggpHk0/+vl5qDVipQflf3hrABqVjpEOmt0XBxPjHb5tM9iLCC7KTwB4aqJL9foHz99TB5boLza3TyqC3rKWV4njGZskg3eqGHxCHyfCJpmhV12iVQ9taRHUGgpsxx5VKO4edkuRV5+EkZTFrUrkSbxfHbfXgZ12MBjIoM20O5RH9fw9gijmGGcFWdZIYgL42YtDY1Woyle21OfTbvQU2RjhCTl9Flgu0YEFFtD8eH/iQigWUrzyoKzbbON4GYKvvjCWbCe/HNGXSQQKQ7amEEDyIQuqJEEGduFVTkijvbkUPKU2lK5rIe613IcKlg4tTdKZZ/uZcD9dSsNjrgme2oC8E+bgO5+DrIl4bw7E7OcmpLM9h6y5lyqTDAPdAEOTkPNETuMDiZc1sV2fTUgDmqXZd0cQmlhViMx6q6gfIiTHScALlZEltRZJZZ7qcmonrV+cVH6UmxAzSLidji+Q2yV2rGxFjQS00M4fpvCNqMVPy66HIa76YceHZDfj3NoFAubXTZpUbKDuwP6jH639O2NeqSq2qGuxGo2iLok4XcNOs/39TccXICGhTL/RnXCd1cvaOKk3i6HvlhjKB+Rgq2ewrm6rsWfk9SS1W689yqRLyRjprC2Sqb9PggAILp/uFaIILYiwSk5zGrMRFcnuTEM08by3oEth0LxfwhEoQLXjTY557Hsw9RfAftJ2w0epMOkG7DVTXHXw9suVXW6GFTKyKs+wzA7BwOAKfof5fMDWbi7HWo8aLZE9cNZQf0otLdJ8o/M/SuWz+AHdwZ9Uf9R1yJ03ZRiRg/oGOeE5FT9Q14hRPth7NS7hwwmajqsiHjfwmrwLYfgnwC8lCNbp+X2u6xlEKe0lVQQnsupQ7xludP1sQG9uJRXXiA2JoZJTAuZA1zO6PrEfOE8c9oJZqIZZGyqFnU9rIH/jP/yqFybffujp9ZEjrRW6Zf7ihlHd7LAvpZIPjb1Fzh6pOYoN0QItFZbEadjANHaZYnHiO/aOfCtFSvNM/p1rs4tpzo3glvyWYw1qtpTOE7RKF+4LjjlHfLLAk2B337pec9VCrhyAadn5rbFsYfKZXKg32OX6Nxy8icH8zv9D6t+HRqvvqYIToJbHytayxJl3Phrlw5i5Uh8Z7xBdoqzBixCxy3UKVm1Vp4+R5+M4EzwhBfUEyyIxbLkFDPH5uf6+lnD+t0MJPfP4d/7UlVnzpI6RhWG/crVJmLTSOiUy73ciIP5ZMEBGasW7v0V34OcrT/DyrUNAHAHiCZw4ICNKXuiZJPzCCsOVaoAhmBJ8BJGPtWuyVekQaqc2xKEvuabThu2UZ8ReIVjx+T1DjEffQlZ5MBMNk5XrbGwkXU05+1prwYF6KlN3Y4ZtcsIsoPbmmI7ZmeanRjkZxqvFL520ZMMcgm7DaUekw10tkzetz+jO5NsD3e0pC0oFeQBRELPApDUV/eYMGRrciRgO/7M7PONtz55ogwhKerDzCom2tF3ifLIp/DIoDKUsLqe753Ai9EtH82RQBluVsZ6mA4WMOqQLv+mswv8y3hmqb6ZOF2hhGXIHuCz2BECU1hXCi33UtEEMCLf33ufTVy6Yqqi43lXP+2VwHcQitPgJxH65TGhlAA+cA0CDR7hFq5NlxI5djncYM13SIuO7xHGVHgqiQQKW+HwfCX83GrmpzwdVvl/BTnH1a8vRcmh03PNrforsgOMk0n9W/0uoHbc2tqzInpz6NS4C+IJHrebfu+yZZ7PU9yiYvhQuS3qTV0Suohnd1VmiI5lS1H7o99MTXP0VIv4NHhh9ZXo2grWIDjUQb+k64TqINp+4ssy2GVwJkX692C7Aqkggwz0N7hpo2brJ5L+not6IjQQ9YAlv3527lafL1pID7NypyY2hKlQTWhW7XEMPWny+a1XVVjxcZliO+O0R6MtbIMvCyZRYHJchKmuIjukWYakD3L24Txy6PadvHpn/qTk+lQKW437ieOVuD6tSOu5hSf+myL0nzovPIUFUIKbxPnngRYIF4IrK7P/2v9pysalCAP6I9kd1KatSIq9bT2mhbgJG4YH9JcXE45MTgrUFrs2EaJJNrk53DDaX8N4Nwz6PbQu0HMagwa8uGXtSC+T9RP1lE4fSnU7WStnAdKTRAGy1cCyPEDPg61CmnkVZtzmn/qOKfS+YzT5I5ZJQsAlR6iybuVSMgyCh2bPwzOYR6J+ZX9mvoRCp8x9tNMT435CwY6Vg9ssLbbAdzgggBPdxUf6+4W1q5f//srmrTKAzT07ESd3ftutlEkFsBTh6GOiSrV/ayYvnGDu0nIA+fySiK7DPsVkkC94BKgYDMEvciM97P1PerlXY7WP2/FH+9lyyXJRa+sA+oFmScM+XU33AQzBWJlwsaVL5U9Q75HFYEFjSK2VmLu1ezkSlluQJm2F1VULW9VBSnDzg8CttuiFfdurmGeO/ruURXrq+6Wx6Azv+HrCwjxZ1nX7oNXNnUjP6RL8UPimJGFpKe21d4zczNPfXqHxlfy6rYFBAXROWzYGGsTY0RxoFefwak995tTsv+hRLApAJwFPw1kw4/UtTUbPx0QVWj2Ni6driezwjXuPtR6IodsusAmQFIufyc8L2E+4VaGrM4q2jMqahAUM/FxRUemOxUdB8EpiBVZjhuTibyYlrqmIkAFi01AB0rdHXku8NFRkr79NocoUcNat/Ilx/YaKpBmKQb7BXnBqsCZE2A5S4BxeV96daxCIdV5w5P6gQEXlNcDktakJ3hSpn4B7C6xlENm7YiBY1BJE14IlkLI3qrJNFtpKWwAeDJl1rlHM/MoaV/g+dZHrgc/mkiFlz7TTtdItz/BiLwrJkFSrEnXcbDoSJY7QDnZv2SgOoi2CnaBPLwhBDKp/HiM5ThbtbSAxUZuKHT1Mxj/AFzHGFo4ZlFgmGXAgQts5/4MYH16QwSScGnLugNHv4uSOQptdQMgRpdaei1BwC3WfYXu8QImIqgnrme0oDs/DKy3JrUlWL/8GP2ubEOiuKwH9uAQP+Kidq7x2kDH8RwRE6wIO04g/xKpW6hKww13UOvoq7LqVc2ooSj8OwBi4Xkno8ZvjsUnlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1024,
"_total_timesteps": 50,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1667747520945718669,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMBKSL44nsM/y+EdvwqEHb6QjAk/M1euPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -19.48,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVNQIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7idjfJh7UsCUhpRSlIwBbJRLV4wBdJRHQEpZ7w8W9Dh1fZQoaAZoCWgPQwge/MQB9HJnwJSGlFKUaBVLfWgWR0BKcG65Gz8hdX2UKGgGaAloD0MIUInrGFe8IsCUhpRSlGgVS0toFkdASn04//vOQnV9lChoBmgJaA9DCOgv9IgRw3HAlIaUUpRoFUtRaBZHQEqLAzHjp9t1fZQoaAZoCWgPQwh4Qq8/idJhwJSGlFKUaBVLZWgWR0BKnCm/FirldX2UKGgGaAloD0MIvM6G/DNJW8CUhpRSlGgVS1doFkdASqpvegte2XV9lChoBmgJaA9DCAPPvYdLqWHAlIaUUpRoFUtTaBZHQEq3hhpg1FZ1fZQoaAZoCWgPQwgTSfQyilZVwJSGlFKUaBVLQmgWR0BKw17Y02tMdX2UKGgGaAloD0MILjcY6nCtcsCUhpRSlGgVS1doFkdAStHCIk7fYXV9lChoBmgJaA9DCE9ZTdcT6FbAlIaUUpRoFUt5aBZHQErlvQ4S6Dp1fZQoaAZoCWgPQwj9ag4QTFRjwJSGlFKUaBVLQmgWR0BK8YUN8VpLdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 8,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}