Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.16 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32ab7c7ab202859bb16afe19314d4e711ac9c1ca87766eb121e7a7de32bb60cb
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d8ada02c310>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d8ada026540>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692660366966549051,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATnS1PzI/ZT88fFS/BLVzvkvb5b69q0O9y0FxPiihIbsCetg+6N7Sv3DbBMDarw/AlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKSrSP9/3RT/iCji/SiTUvpORzr/JVkA7NLe1v2OkeD56S5e+UlyJvx3k0r9OJ6W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABOdLU/Mj9lPzx8VL8dlVM+hV0ZPFzRzb8EtXO+S9vlvr2rQ70ufYC/eiLhvx0EO7/LQXE+KKEhuwJ62D47tfU+fEoGu76GxD7o3tK/cNsEwNqvD8D697K//tCLv9qXcb+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 1.4176118 0.89549553 -0.83002067]\n [-0.2379952 -0.4489387 -0.0477712 ]\n [ 0.23560254 -0.00246627 0.42280585]\n [-1.6474276 -2.0758934 -2.2451081 ]]",
|
34 |
+
"desired_goal": "[[ 1.6419116 0.77331346 -0.71891606]\n [-0.41433936 -1.6138176 0.00293486]\n [-1.4196534 0.24281459 -0.29549772]\n [-1.0731299 -1.6475865 -1.290262 ]]",
|
35 |
+
"observation": "[[ 1.4176118e+00 8.9549553e-01 -8.3002067e-01 2.0662351e-01\n 9.3606757e-03 -1.6079516e+00]\n [-2.3799521e-01 -4.4893870e-01 -4.7771204e-02 -1.0038202e+00\n -1.7588646e+00 -7.3053151e-01]\n [ 2.3560254e-01 -2.4662707e-03 4.2280585e-01 4.7989830e-01\n -2.0491173e-03 3.8384050e-01]\n [-1.6474276e+00 -2.0758934e+00 -2.2451081e+00 -1.3981926e+00\n -1.0923154e+00 -9.4372332e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcV/aPdnxCr7xsMg92022PNQB+zyo5j49FIbivTKdD74lP5c+LUlNvVIRdT2gr9U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.10662735 -0.1356882 0.09799374]\n [ 0.02225392 0.03064052 0.04660669]\n [-0.1106073 -0.14024809 0.29540363]\n [-0.05011861 0.05983097 0.10433888]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv85Fqi48U22MAWyUSwOMAXSUR0Ct+3yzollcdX2UKGgGR7/B7BO58Sf2aAdLAmgIR0Ct/DcU21lYdX2UKGgGR7+HoLXtjTa1aAdLAWgIR0Ct+/sd92HMdX2UKGgGR7+7mxMWXTmXaAdLAmgIR0Ct+7+ZXuE3dX2UKGgGR7/JL7Gecx0uaAdLA2gIR0Ct+5QIldC3dX2UKGgGR7/L3WWhRIjGaAdLA2gIR0Ct/BI7Njb0dX2UKGgGR7/b9If8uSOjaAdLBGgIR0Ct/FUcwQDndX2UKGgGR7/dBqbjLjgiaAdLBGgIR0Ct+91ObiIddX2UKGgGR7+x1vES/TLGaAdLAmgIR0Ct+6GMGX5WdX2UKGgGR7+0ZJkGzKLbaAdLAmgIR0Ct/CAGKQ7tdX2UKGgGR7/GKJl8PWhAaAdLA2gIR0Ct/GuYx+KCdX2UKGgGR7/RxWDHwPRRaAdLA2gIR0Ct+/Nu+AVgdX2UKGgGR7/UyXUpd8iOaAdLA2gIR0Ct+7f29L6DdX2UKGgGR7/HWilBQemvaAdLA2gIR0Ct/DgPmPo3dX2UKGgGR7++fh/Aj6eoaAdLAmgIR0Ct/AIw22ofdX2UKGgGR7/JbEgntv4uaAdLA2gIR0Ct/ICdrftQdX2UKGgGR7/NL5AQg9vCaAdLA2gIR0Ct+8zwtrbhdX2UKGgGR7/TLronrpqzaAdLA2gIR0Ct/E1GLDQ7dX2UKGgGR7+9RHf/FR51aAdLAmgIR0Ct/BFsHjZMdX2UKGgGR7/Vm29cry2AaAdLA2gIR0Ct/JmDtgKGdX2UKGgGR7+3Kji4rjHXaAdLAmgIR0Ct/F2u5jH5dX2UKGgGR7/Oqp97WuoxaAdLA2gIR0Ct/Ch1cMVldX2UKGgGR7/ZcR15jYqYaAdLBGgIR0Ct++0w8GLUdX2UKGgGR7/DssxwhnrZaAdLAmgIR0Ct/Ke6Ae7udX2UKGgGR7/BVENOM2m6aAdLA2gIR0Ct/HIEB8x9dX2UKGgGR7+xq8Djin50aAdLAmgIR0Ct/DYpDu0DdX2UKGgGR7/BS/j81n/UaAdLAmgIR0Ct/LeXzDoAdX2UKGgGR7/Im1IAfdRBaAdLA2gIR0Ct/AQ6hg3MdX2UKGgGR7+0VGkN4JNTaAdLAmgIR0Ct/EakZaV2dX2UKGgGR7/SQAdXDFZQaAdLA2gIR0Ct/MvX05EMdX2UKGgGR7/XB2fTTfBOaAdLBGgIR0Ct/JCcPOIJdX2UKGgGR7/EFCb+cYqHaAdLAmgIR0Ct/FTSLIgedX2UKGgGR7/Otf5ULlV+aAdLA2gIR0Ct/BklVtGedX2UKGgGR7/AKCQLeANHaAdLAmgIR0Ct/NxrrPdEdX2UKGgGR7+0nJDE3sHCaAdLAmgIR0Ct/KB0hePadX2UKGgGR7/HwmVqveP8aAdLA2gIR0Ct/GsSCe3AdX2UKGgGR7/GKqGUOd5IaAdLA2gIR0Ct/C9yDIzWdX2UKGgGR7+9HiFTNt65aAdLAmgIR0Ct/Hj3dsSCdX2UKGgGR7/Y0ZFXq7iAaAdLBGgIR0Ct/PitihFmdX2UKGgGR7/QpM6BAfMfaAdLA2gIR0Ct/EXIuGsWdX2UKGgGR7/LJiiItUXIaAdLA2gIR0Ct/JO76Hj7dX2UKGgGR7/QoZydWhh6aAdLA2gIR0Ct/RJlJ6IFdX2UKGgGR7/RdhRZU1htaAdLA2gIR0Ct/F7UPQOXdX2UKGgGR7+32dupCKJmaAdLAmgIR0Ct/KJaA4GVdX2UKGgGR7/JJnQID5j6aAdLA2gIR0Ct/SnqNZNgdX2UKGgGR7++dXko4MnaaAdLAmgIR0Ct/LHoX9BKdX2UKGgGR7/OOFxn3+MqaAdLA2gIR0Ct/HbA1vVFdX2UKGgGR7/EvZAY51eTaAdLAmgIR0Ct/L+UyHmBdX2UKGgGR7/KUi6g/TsqaAdLA2gIR0Ct/T4J/oaDdX2UKGgGR7/GPDpC8e0YaAdLA2gIR0Ct/Ip4jbBXdX2UKGgGR79+zlcQiA2AaAdLAWgIR0Ct/JGPgeijdX2UKGgGR7+1IuoP07KaaAdLAmgIR0Ct/U7rLQokdX2UKGgGR7/OEYfnwG4aaAdLA2gIR0Ct/NcrZrYXdX2UKGgGR7+y/ub7TDwZaAdLAmgIR0Ct/VyDAaegdX2UKGgGR7+/lRxcVxjsaAdLAmgIR0Ct/OSNwR5DdX2UKGgGR7/Pt1IRRMviaAdLA2gIR0Ct/Kjr7fpEdX2UKGgGR7/DJbMX7+DOaAdLAmgIR0Ct/WoI4VASdX2UKGgGR7/HJTVDrqt6aAdLAmgIR0Ct/PJMpPRBdX2UKGgGR7/Y9lmOEM9baAdLBGgIR0Ct/Mb349HMdX2UKGgGR7/PkH2RJVbSaAdLA2gIR0Ct/YF3hXKbdX2UKGgGR7/WkkrwvxpdaAdLBGgIR0Ct/REw35vcdX2UKGgGR7/P74zrNW2gaAdLA2gIR0Ct/NzEzfrKdX2UKGgGR7+8zk6tDD0laAdLAmgIR0Ct/SLIxQBQdX2UKGgGR7+lIuoP07KaaAdLAWgIR0Ct/OcvM8oydX2UKGgGR7/bxeb/ffoBaAdLBGgIR0Ct/aH2h7E6dX2UKGgGR7+iDyvs7dSEaAdLAWgIR0Ct/O7H6uW9dX2UKGgGR7/QMcIZ62ORaAdLA2gIR0Ct/TiAlOXWdX2UKGgGR7/P4Uvf0mMPaAdLA2gIR0Ct/beJgsshdX2UKGgGR7//mM4tHxz8aAdLHWgIR0Ct/XvcafjCdX2UKGgGR7/TQjlgc94eaAdLA2gIR0Ct/QSYw7DEdX2UKGgGR7+/OJLuhK15aAdLAmgIR0Ct/YxgZ0jkdX2UKGgGR7/SlyBClabGaAdLA2gIR0Ct/VCwbEP2dX2UKGgGR7/MT238XN1RaAdLA2gIR0Ct/RvP9kz5dX2UKGgGR7/f1VYISlFdaAdLBGgIR0Ct/dbe/Ho6dX2UKGgGR7+pP9DQZ4wAaAdLAWgIR0Ct/d1JcxCZdX2UKGgGR7/QYBeXzDoAaAdLA2gIR0Ct/aGXw9aEdX2UKGgGR7/AqdYnv2GqaAdLAmgIR0Ct/SpN0vGqdX2UKGgGR7+/EXLvCuU2aAdLAmgIR0Ct/TrVOKwZdX2UKGgGR7/Ro0hvBJqZaAdLA2gIR0Ct/fVhsqJ/dX2UKGgGR7/TMEzO5avBaAdLA2gIR0Ct/blrdnCgdX2UKGgGR7/glJ6IFeOXaAdLB2gIR0Ct/YS2QXANdX2UKGgGR7+yJWNm16VuaAdLAmgIR0Ct/gNWluWKdX2UKGgGR7/J7AtWdVebaAdLA2gIR0Ct/U+YlY2bdX2UKGgGR7/ERcu8K5TZaAdLAmgIR0Ct/ZUT+NtJdX2UKGgGR7/YxhUipvP1aAdLBGgIR0Ct/dfOMVDbdX2UKGgGR7/T/p+tr9EUaAdLA2gIR0Ct/WYdIXj3dX2UKGgGR7/VH93r2QGOaAdLBGgIR0Ct/iDIq9XcdX2UKGgGR7/WpmmLtNSJaAdLA2gIR0Ct/ajO9nK5dX2UKGgGR7/bGsFMZgogaAdLBGgIR0Ct/fVqWToudX2UKGgGR7/Q3pwCKaXsaAdLA2gIR0Ct/X2p6yB1dX2UKGgGR7/UFAE+xGDuaAdLA2gIR0Ct/cCCBf8edX2UKGgGR7/Z6DoQnQY2aAdLBGgIR0Ct/j+40/GEdX2UKGgGR7+71EmY0EX+aAdLAmgIR0Ct/gPFm4AkdX2UKGgGR7+96zE74i5eaAdLAmgIR0Ct/k76xgRcdX2UKGgGR7/ZnivPkaMraAdLBGgIR0Ct/ZvmHP/rdX2UKGgGR7/UaEzwc5sCaAdLBGgIR0Ct/iVZcLSedX2UKGgGR7/EukDZDiOvaAdLAmgIR0Ct/a4QjD8+dX2UKGgGR7/FzPKMefZmaAdLA2gIR0Ct/mkBKcurdX2UKGgGR7++kWRA8jiXaAdLAmgIR0Ct/jQrtmcwdX2UKGgGR7/iMX7+DOC5aAdLCGgIR0Ct/f624NI9dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22b10755ee7339e2b005525493cfc37d8a602da7959f2404bb5b0e4a7624117e
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cf4faee923187bc3287d9300365f12211f08687ada788e3efdedbf18e6a6a3a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d8ada02c310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8ada026540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692660366966549051, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATnS1PzI/ZT88fFS/BLVzvkvb5b69q0O9y0FxPiihIbsCetg+6N7Sv3DbBMDarw/AlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKSrSP9/3RT/iCji/SiTUvpORzr/JVkA7NLe1v2OkeD56S5e+UlyJvx3k0r9OJ6W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABOdLU/Mj9lPzx8VL8dlVM+hV0ZPFzRzb8EtXO+S9vlvr2rQ70ufYC/eiLhvx0EO7/LQXE+KKEhuwJ62D47tfU+fEoGu76GxD7o3tK/cNsEwNqvD8D697K//tCLv9qXcb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.4176118 0.89549553 -0.83002067]\n [-0.2379952 -0.4489387 -0.0477712 ]\n [ 0.23560254 -0.00246627 0.42280585]\n [-1.6474276 -2.0758934 -2.2451081 ]]", "desired_goal": "[[ 1.6419116 0.77331346 -0.71891606]\n [-0.41433936 -1.6138176 0.00293486]\n [-1.4196534 0.24281459 -0.29549772]\n [-1.0731299 -1.6475865 -1.290262 ]]", "observation": "[[ 1.4176118e+00 8.9549553e-01 -8.3002067e-01 2.0662351e-01\n 9.3606757e-03 -1.6079516e+00]\n [-2.3799521e-01 -4.4893870e-01 -4.7771204e-02 -1.0038202e+00\n -1.7588646e+00 -7.3053151e-01]\n [ 2.3560254e-01 -2.4662707e-03 4.2280585e-01 4.7989830e-01\n -2.0491173e-03 3.8384050e-01]\n [-1.6474276e+00 -2.0758934e+00 -2.2451081e+00 -1.3981926e+00\n -1.0923154e+00 -9.4372332e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcV/aPdnxCr7xsMg92022PNQB+zyo5j49FIbivTKdD74lP5c+LUlNvVIRdT2gr9U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10662735 -0.1356882 0.09799374]\n [ 0.02225392 0.03064052 0.04660669]\n [-0.1106073 -0.14024809 0.29540363]\n [-0.05011861 0.05983097 0.10433888]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv85Fqi48U22MAWyUSwOMAXSUR0Ct+3yzollcdX2UKGgGR7/B7BO58Sf2aAdLAmgIR0Ct/DcU21lYdX2UKGgGR7+HoLXtjTa1aAdLAWgIR0Ct+/sd92HMdX2UKGgGR7+7mxMWXTmXaAdLAmgIR0Ct+7+ZXuE3dX2UKGgGR7/JL7Gecx0uaAdLA2gIR0Ct+5QIldC3dX2UKGgGR7/L3WWhRIjGaAdLA2gIR0Ct/BI7Njb0dX2UKGgGR7/b9If8uSOjaAdLBGgIR0Ct/FUcwQDndX2UKGgGR7/dBqbjLjgiaAdLBGgIR0Ct+91ObiIddX2UKGgGR7+x1vES/TLGaAdLAmgIR0Ct+6GMGX5WdX2UKGgGR7+0ZJkGzKLbaAdLAmgIR0Ct/CAGKQ7tdX2UKGgGR7/GKJl8PWhAaAdLA2gIR0Ct/GuYx+KCdX2UKGgGR7/RxWDHwPRRaAdLA2gIR0Ct+/Nu+AVgdX2UKGgGR7/UyXUpd8iOaAdLA2gIR0Ct+7f29L6DdX2UKGgGR7/HWilBQemvaAdLA2gIR0Ct/DgPmPo3dX2UKGgGR7++fh/Aj6eoaAdLAmgIR0Ct/AIw22ofdX2UKGgGR7/JbEgntv4uaAdLA2gIR0Ct/ICdrftQdX2UKGgGR7/NL5AQg9vCaAdLA2gIR0Ct+8zwtrbhdX2UKGgGR7/TLronrpqzaAdLA2gIR0Ct/E1GLDQ7dX2UKGgGR7+9RHf/FR51aAdLAmgIR0Ct/BFsHjZMdX2UKGgGR7/Vm29cry2AaAdLA2gIR0Ct/JmDtgKGdX2UKGgGR7+3Kji4rjHXaAdLAmgIR0Ct/F2u5jH5dX2UKGgGR7/Oqp97WuoxaAdLA2gIR0Ct/Ch1cMVldX2UKGgGR7/ZcR15jYqYaAdLBGgIR0Ct++0w8GLUdX2UKGgGR7/DssxwhnrZaAdLAmgIR0Ct/Ke6Ae7udX2UKGgGR7/BVENOM2m6aAdLA2gIR0Ct/HIEB8x9dX2UKGgGR7+xq8Djin50aAdLAmgIR0Ct/DYpDu0DdX2UKGgGR7/BS/j81n/UaAdLAmgIR0Ct/LeXzDoAdX2UKGgGR7/Im1IAfdRBaAdLA2gIR0Ct/AQ6hg3MdX2UKGgGR7+0VGkN4JNTaAdLAmgIR0Ct/EakZaV2dX2UKGgGR7/SQAdXDFZQaAdLA2gIR0Ct/MvX05EMdX2UKGgGR7/XB2fTTfBOaAdLBGgIR0Ct/JCcPOIJdX2UKGgGR7/EFCb+cYqHaAdLAmgIR0Ct/FTSLIgedX2UKGgGR7/Otf5ULlV+aAdLA2gIR0Ct/BklVtGedX2UKGgGR7/AKCQLeANHaAdLAmgIR0Ct/NxrrPdEdX2UKGgGR7+0nJDE3sHCaAdLAmgIR0Ct/KB0hePadX2UKGgGR7/HwmVqveP8aAdLA2gIR0Ct/GsSCe3AdX2UKGgGR7/GKqGUOd5IaAdLA2gIR0Ct/C9yDIzWdX2UKGgGR7+9HiFTNt65aAdLAmgIR0Ct/Hj3dsSCdX2UKGgGR7/Y0ZFXq7iAaAdLBGgIR0Ct/PitihFmdX2UKGgGR7/QpM6BAfMfaAdLA2gIR0Ct/EXIuGsWdX2UKGgGR7/LJiiItUXIaAdLA2gIR0Ct/JO76Hj7dX2UKGgGR7/QoZydWhh6aAdLA2gIR0Ct/RJlJ6IFdX2UKGgGR7/RdhRZU1htaAdLA2gIR0Ct/F7UPQOXdX2UKGgGR7+32dupCKJmaAdLAmgIR0Ct/KJaA4GVdX2UKGgGR7/JJnQID5j6aAdLA2gIR0Ct/SnqNZNgdX2UKGgGR7++dXko4MnaaAdLAmgIR0Ct/LHoX9BKdX2UKGgGR7/OOFxn3+MqaAdLA2gIR0Ct/HbA1vVFdX2UKGgGR7/EvZAY51eTaAdLAmgIR0Ct/L+UyHmBdX2UKGgGR7/KUi6g/TsqaAdLA2gIR0Ct/T4J/oaDdX2UKGgGR7/GPDpC8e0YaAdLA2gIR0Ct/Ip4jbBXdX2UKGgGR79+zlcQiA2AaAdLAWgIR0Ct/JGPgeijdX2UKGgGR7+1IuoP07KaaAdLAmgIR0Ct/U7rLQokdX2UKGgGR7/OEYfnwG4aaAdLA2gIR0Ct/NcrZrYXdX2UKGgGR7+y/ub7TDwZaAdLAmgIR0Ct/VyDAaegdX2UKGgGR7+/lRxcVxjsaAdLAmgIR0Ct/OSNwR5DdX2UKGgGR7/Pt1IRRMviaAdLA2gIR0Ct/Kjr7fpEdX2UKGgGR7/DJbMX7+DOaAdLAmgIR0Ct/WoI4VASdX2UKGgGR7/HJTVDrqt6aAdLAmgIR0Ct/PJMpPRBdX2UKGgGR7/Y9lmOEM9baAdLBGgIR0Ct/Mb349HMdX2UKGgGR7/PkH2RJVbSaAdLA2gIR0Ct/YF3hXKbdX2UKGgGR7/WkkrwvxpdaAdLBGgIR0Ct/REw35vcdX2UKGgGR7/P74zrNW2gaAdLA2gIR0Ct/NzEzfrKdX2UKGgGR7+8zk6tDD0laAdLAmgIR0Ct/SLIxQBQdX2UKGgGR7+lIuoP07KaaAdLAWgIR0Ct/OcvM8oydX2UKGgGR7/bxeb/ffoBaAdLBGgIR0Ct/aH2h7E6dX2UKGgGR7+iDyvs7dSEaAdLAWgIR0Ct/O7H6uW9dX2UKGgGR7/QMcIZ62ORaAdLA2gIR0Ct/TiAlOXWdX2UKGgGR7/P4Uvf0mMPaAdLA2gIR0Ct/beJgsshdX2UKGgGR7//mM4tHxz8aAdLHWgIR0Ct/XvcafjCdX2UKGgGR7/TQjlgc94eaAdLA2gIR0Ct/QSYw7DEdX2UKGgGR7+/OJLuhK15aAdLAmgIR0Ct/YxgZ0jkdX2UKGgGR7/SlyBClabGaAdLA2gIR0Ct/VCwbEP2dX2UKGgGR7/MT238XN1RaAdLA2gIR0Ct/RvP9kz5dX2UKGgGR7/f1VYISlFdaAdLBGgIR0Ct/dbe/Ho6dX2UKGgGR7+pP9DQZ4wAaAdLAWgIR0Ct/d1JcxCZdX2UKGgGR7/QYBeXzDoAaAdLA2gIR0Ct/aGXw9aEdX2UKGgGR7/AqdYnv2GqaAdLAmgIR0Ct/SpN0vGqdX2UKGgGR7+/EXLvCuU2aAdLAmgIR0Ct/TrVOKwZdX2UKGgGR7/Ro0hvBJqZaAdLA2gIR0Ct/fVhsqJ/dX2UKGgGR7/TMEzO5avBaAdLA2gIR0Ct/blrdnCgdX2UKGgGR7/glJ6IFeOXaAdLB2gIR0Ct/YS2QXANdX2UKGgGR7+yJWNm16VuaAdLAmgIR0Ct/gNWluWKdX2UKGgGR7/J7AtWdVebaAdLA2gIR0Ct/U+YlY2bdX2UKGgGR7/ERcu8K5TZaAdLAmgIR0Ct/ZUT+NtJdX2UKGgGR7/YxhUipvP1aAdLBGgIR0Ct/dfOMVDbdX2UKGgGR7/T/p+tr9EUaAdLA2gIR0Ct/WYdIXj3dX2UKGgGR7/VH93r2QGOaAdLBGgIR0Ct/iDIq9XcdX2UKGgGR7/WpmmLtNSJaAdLA2gIR0Ct/ajO9nK5dX2UKGgGR7/bGsFMZgogaAdLBGgIR0Ct/fVqWToudX2UKGgGR7/Q3pwCKaXsaAdLA2gIR0Ct/X2p6yB1dX2UKGgGR7/UFAE+xGDuaAdLA2gIR0Ct/cCCBf8edX2UKGgGR7/Z6DoQnQY2aAdLBGgIR0Ct/j+40/GEdX2UKGgGR7+71EmY0EX+aAdLAmgIR0Ct/gPFm4AkdX2UKGgGR7+96zE74i5eaAdLAmgIR0Ct/k76xgRcdX2UKGgGR7/ZnivPkaMraAdLBGgIR0Ct/ZvmHP/rdX2UKGgGR7/UaEzwc5sCaAdLBGgIR0Ct/iVZcLSedX2UKGgGR7/EukDZDiOvaAdLAmgIR0Ct/a4QjD8+dX2UKGgGR7/FzPKMefZmaAdLA2gIR0Ct/mkBKcurdX2UKGgGR7++kWRA8jiXaAdLAmgIR0Ct/jQrtmcwdX2UKGgGR7/iMX7+DOC5aAdLCGgIR0Ct/f624NI9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (675 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.15894143730401994, "std_reward": 0.09227004119029034, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-22T00:14:51.150599"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:298396e3a95ed3fe8eeb0aaac66071b3db14dd9502190846fa2142f373c6408d
|
3 |
+
size 2623
|