agnprz commited on
Commit
6c4e4d3
1 Parent(s): 81a876e

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a008b66df3a91a86ae693a28fad6f44c4495235c45f92bb5ebd116b803fc906b
3
+ size 143990
PPO_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO_LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4afbe530e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4afbe53170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4afbe53200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4afbe53290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4afbe53320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4afbe533b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4afbe53440>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4afbe534d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4afbe53560>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4afbe535f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4afbe53680>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4afbea7210>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651825089.1506379,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNSkb1khYc/GpqJvWUgBr+zMSm+Mk0NPQAAAAAAAAAAbXh0PmHkjj8kXwI+JmALv6L8wj4uOju+AAAAAAAAAAAzizw7RTqyP4nLDj7eHNm+1iuxumPQ6DsAAAAAAAAAAGZHTz0DBAG8+wAOvor3D77KcgM9Sbs5PwAAgD8AAIA/AF6KvK8gWz+LYzw9ocrwvvtmdLzhzqg9AAAAAAAAAACaULS8O/qOvCUCizwQaoO9wo6OvXqFqL4AAIA/AACAP5qn8Lx7qpW6WAejM4loLq/QTsc6SuzDswAAgD8AAIA/M0yDPT0GUDrCOlq2QvAUsmN/QjyqEY41AACAPwAAgD9my8u8Uhz9u0qWYzxW5448Do5TvVZxbz0AAIA/AACAP01stT1fI/U+MmhavsB5u74T/RO+9yGhvQAAAAAAAAAAAGi2PSkMR7oq5Fe4MWVJs8HwbzsAcn83AACAPwAAAABmhYg87P6EuxLxhDzySwU9zWPQPDiZ3r0AAIA/AACAPzOw+bxcX0O6xHOttnxQsbEcpYM7rsjKNQAAgD8AAIA/zaoFPXY9Z7zkr5G9E1Jqvbh3uj16dLg+AACAPwAAgD/Neqo8F/QTPM5cmb38b6O+FWfLvejT+zsAAIA/AAAAAGY/hrx2HQC8kixyuz4qxDyByV89SwmivQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWTSdnQxlcUCUhpRSlIwBbJRLz4wBdJRHQKE8eTibUgB1fZQoaAZoCWgPQwgdAdwsnixyQJSGlFKUaBVL3WgWR0ChPLsvh60IdX2UKGgGaAloD0MIud+hKFBlb0CUhpRSlGgVS99oFkdAoTzEeyRjjXV9lChoBmgJaA9DCNsV+mDZz3NAlIaUUpRoFUvcaBZHQKE9JSBK+SN1fZQoaAZoCWgPQwiRJt4BXo9xQJSGlFKUaBVL0mgWR0ChPTtq59VndX2UKGgGaAloD0MI+daH9UbJbUCUhpRSlGgVS+BoFkdAoT1Fkxyn1nV9lChoBmgJaA9DCAdBR6ta3nFAlIaUUpRoFUvcaBZHQKE9Xnr6ciJ1fZQoaAZoCWgPQwgrL/mfPAlzQJSGlFKUaBVLwWgWR0ChPW9OqNp/dX2UKGgGaAloD0MIk1SmmMPWcUCUhpRSlGgVS9hoFkdAoT2BRXOnmHV9lChoBmgJaA9DCIHQevjyhnBAlIaUUpRoFUvfaBZHQKE9h3j+7191fZQoaAZoCWgPQwhuaMpOP5RzQJSGlFKUaBVL4GgWR0ChPcSsKb8WdX2UKGgGaAloD0MIjfFh9rJkckCUhpRSlGgVS/VoFkdAoT33E87p3XV9lChoBmgJaA9DCMKGp1fKBG5AlIaUUpRoFUvZaBZHQKE+BcY64lR1fZQoaAZoCWgPQwiQv7Soz3FzQJSGlFKUaBVL42gWR0ChPrFwtJ4CdX2UKGgGaAloD0MIkPeqlUlrckCUhpRSlGgVS/VoFkdAoT7RwIdELHV9lChoBmgJaA9DCFbysbsAeHBAlIaUUpRoFUvCaBZHQKE/DCAMDwJ1fZQoaAZoCWgPQwjOwTOhSZduQJSGlFKUaBVL1mgWR0ChP9MwUQCkdX2UKGgGaAloD0MI5BJHHgj+cECUhpRSlGgVS8doFkdAoUAm2kSElHV9lChoBmgJaA9DCIDXZ866CXJAlIaUUpRoFUv7aBZHQKFAMskIHC51fZQoaAZoCWgPQwjoEaPn1sxyQJSGlFKUaBVL2mgWR0ChQFlUZNwjdX2UKGgGaAloD0MIDfs9sc6cckCUhpRSlGgVS9FoFkdAoUByhi9ZinV9lChoBmgJaA9DCLh0zHlGtHFAlIaUUpRoFUvWaBZHQKFAmsDnvDx1fZQoaAZoCWgPQwgMWkjA6FFxQJSGlFKUaBVL/mgWR0ChQQM5GSZCdX2UKGgGaAloD0MISzygbMpYcUCUhpRSlGgVS+1oFkdAoUEM1CPZI3V9lChoBmgJaA9DCDwW26Ri7HBAlIaUUpRoFU0fAWgWR0ChQRBjvuw5dX2UKGgGaAloD0MIX3mQniINdECUhpRSlGgVS8toFkdAoUEVbor4FnV9lChoBmgJaA9DCNlD+1jBbXBAlIaUUpRoFUvxaBZHQKFBI2vStvJ1fZQoaAZoCWgPQwi14bA0cD9vQJSGlFKUaBVNAwFoFkdAoUGnnIQvpXV9lChoBmgJaA9DCKFLOPTWkHJAlIaUUpRoFU0BAWgWR0ChUBHL7oB8dX2UKGgGaAloD0MIzApFuh8qcUCUhpRSlGgVS9VoFkdAoVBDaVUuMHV9lChoBmgJaA9DCJ9XPPVIpXFAlIaUUpRoFUviaBZHQKFQU4ZuQ6p1fZQoaAZoCWgPQwhdpibBm0NyQJSGlFKUaBVL62gWR0ChUMqkM1CPdX2UKGgGaAloD0MI1/uNdpyTcECUhpRSlGgVS9xoFkdAoVGr0e2d/nV9lChoBmgJaA9DCG3IPzMIQHFAlIaUUpRoFUv0aBZHQKFRwbkwN9Z1fZQoaAZoCWgPQwhTPgRVI75wQJSGlFKUaBVLzmgWR0ChUeYxL0z1dX2UKGgGaAloD0MIWoKMgEqEcECUhpRSlGgVS95oFkdAoVH/HBDXv3V9lChoBmgJaA9DCNifxOeOEnJAlIaUUpRoFUv+aBZHQKFSRzI3irF1fZQoaAZoCWgPQwhv2LYo8yZxQJSGlFKUaBVNAwFoFkdAoVKBc/t6X3V9lChoBmgJaA9DCN0jm6smNHJAlIaUUpRoFUvXaBZHQKFSglw97nh1fZQoaAZoCWgPQwgFGJY/n9FxQJSGlFKUaBVL1GgWR0ChUo03fhuPdX2UKGgGaAloD0MIzO80mfGEckCUhpRSlGgVS+toFkdAoVLHmig00nV9lChoBmgJaA9DCJ+wxAPKoW9AlIaUUpRoFUvraBZHQKFS2MKkVN51fZQoaAZoCWgPQwi4V+atOuJwQJSGlFKUaBVL0GgWR0ChUwk078vVdX2UKGgGaAloD0MIwLFnz2VjcECUhpRSlGgVS/9oFkdAoVMV8Ti84HV9lChoBmgJaA9DCKGfqdftoXJAlIaUUpRoFUvJaBZHQKFTWQgcLjR1fZQoaAZoCWgPQwhr8L4ql8ZwQJSGlFKUaBVL22gWR0ChU2pQtSQ6dX2UKGgGaAloD0MIbK8Fvfc3cUCUhpRSlGgVS/FoFkdAoVP8fgaWHHV9lChoBmgJaA9DCI4glWKHEHFAlIaUUpRoFUviaBZHQKFURaBZpzt1fZQoaAZoCWgPQwgzcEBLF0lxQJSGlFKUaBVL0WgWR0ChVOE0zj3mdX2UKGgGaAloD0MIwOrIkQ4tdECUhpRSlGgVS8loFkdAoVUN7OVxCXV9lChoBmgJaA9DCPjGEACcg3FAlIaUUpRoFUvTaBZHQKFVHehwl0J1fZQoaAZoCWgPQwgZj1IJT7JzQJSGlFKUaBVLxGgWR0ChVXpGnXNDdX2UKGgGaAloD0MIqOLGLSYbckCUhpRSlGgVS8toFkdAoVWf60pmVnV9lChoBmgJaA9DCMLZrWUyInBAlIaUUpRoFUvXaBZHQKFVyC17Y051fZQoaAZoCWgPQwhAwFq169twQJSGlFKUaBVL5GgWR0ChVcSad+XrdX2UKGgGaAloD0MI6j4Aqc2abkCUhpRSlGgVS8VoFkdAoVXVpVS4v3V9lChoBmgJaA9DCIPb2sKzLXFAlIaUUpRoFU0YAWgWR0ChVg+J53TvdX2UKGgGaAloD0MIpg7yevBzcUCUhpRSlGgVS+RoFkdAoVY3r0J4S3V9lChoBmgJaA9DCPz89+C1oHNAlIaUUpRoFUvUaBZHQKFWQd4FA3V1fZQoaAZoCWgPQwivYBvx5O9vQJSGlFKUaBVLwGgWR0ChVl052hZhdX2UKGgGaAloD0MIx7sjYzXFbkCUhpRSlGgVS91oFkdAoVZtYbKif3V9lChoBmgJaA9DCBK9jGK5k3BAlIaUUpRoFUvLaBZHQKFWc9V3ljp1fZQoaAZoCWgPQwh6NxYUBgBxQJSGlFKUaBVLx2gWR0ChVwG/WUbDdX2UKGgGaAloD0MIMILGTGK2cECUhpRSlGgVS/NoFkdAoVfw6EJ0GXV9lChoBmgJaA9DCIM0Y9F0mHFAlIaUUpRoFUvMaBZHQKFYGUahpQF1fZQoaAZoCWgPQwjwTj499mZwQJSGlFKUaBVL1GgWR0ChWEunVG1AdX2UKGgGaAloD0MI7X+AteqmbUCUhpRSlGgVS/VoFkdAoViXyPMjeXV9lChoBmgJaA9DCDsYsU9AOnNAlIaUUpRoFUvIaBZHQKFY0zMRpUR1fZQoaAZoCWgPQwgfEVMiiS9yQJSGlFKUaBVL0WgWR0ChWO3G4qgAdX2UKGgGaAloD0MI86ykFV+JcUCUhpRSlGgVS+VoFkdAoVkWLJjlP3V9lChoBmgJaA9DCLXGoBOCWHJAlIaUUpRoFUvvaBZHQKFZGal1r7B1fZQoaAZoCWgPQwgSM/s8xpFyQJSGlFKUaBVL0WgWR0ChWTgTZg5SdX2UKGgGaAloD0MIuYswRTl/cUCUhpRSlGgVS8JoFkdAoVlS9TP0I3V9lChoBmgJaA9DCEBOmDDawHJAlIaUUpRoFUvSaBZHQKFZZZkCmuV1fZQoaAZoCWgPQwgc8PlhBKhzQJSGlFKUaBVLyGgWR0ChWX5bILgGdX2UKGgGaAloD0MIbRtGQfBFcUCUhpRSlGgVS/5oFkdAoVmSbtqpLnV9lChoBmgJaA9DCPn4hOz8cnJAlIaUUpRoFUvfaBZHQKFZnEuxrzp1fZQoaAZoCWgPQwjRkVz+Q7NwQJSGlFKUaBVL2GgWR0ChWa+dkJ8fdX2UKGgGaAloD0MIvsCsUGSLckCUhpRSlGgVS8RoFkdAoVn1+CsfaHV9lChoBmgJaA9DCHJqZ5iaunNAlIaUUpRoFUvaaBZHQKFbOM8YAKh1fZQoaAZoCWgPQwhffNEer7ZzQJSGlFKUaBVL0mgWR0ChW0DvmYBvdX2UKGgGaAloD0MIzA2GOqzsbUCUhpRSlGgVS9toFkdAoVuao0hvBXV9lChoBmgJaA9DCN3pzhPPBHRAlIaUUpRoFUu+aBZHQKFbw+Pikwh1fZQoaAZoCWgPQwj8qlyovPRwQJSGlFKUaBVL22gWR0ChW+iBXjlxdX2UKGgGaAloD0MIjbPpCGC3c0CUhpRSlGgVS9doFkdAoVwTHIZIhHV9lChoBmgJaA9DCA+1bRiFRXFAlIaUUpRoFUvLaBZHQKFcSY1pCa91fZQoaAZoCWgPQwjjOPBqeRNxQJSGlFKUaBVL42gWR0ChXI9jgAIZdX2UKGgGaAloD0MI/ACkNjFTcUCUhpRSlGgVS+loFkdAoVykyN4qw3V9lChoBmgJaA9DCEBqEyc3VHJAlIaUUpRoFUvIaBZHQKFcyVfu1F91fZQoaAZoCWgPQwgCZr6DX5FyQJSGlFKUaBVL42gWR0ChXN+bd8ArdX2UKGgGaAloD0MIvVZCd8nybkCUhpRSlGgVS91oFkdAoVzkAggX/HV9lChoBmgJaA9DCMsRMpDnuXBAlIaUUpRoFUvraBZHQKFc6sGPgel1fZQoaAZoCWgPQwiXV663TadxQJSGlFKUaBVL3mgWR0ChXP8z67/XdX2UKGgGaAloD0MIfh6jPPMlckCUhpRSlGgVS9FoFkdAoV06RB/qgXV9lChoBmgJaA9DCJhtp61RIHFAlIaUUpRoFUvvaBZHQKFdQWyC4Bp1fZQoaAZoCWgPQwj3j4XoEJFUQJSGlFKUaBVLh2gWR0ChXaHJDE3sdX2UKGgGaAloD0MIvr7WpQawckCUhpRSlGgVS9hoFkdAoV54uf29MHV9lChoBmgJaA9DCBGLGHYYH3BAlIaUUpRoFUvWaBZHQKFeeFoL5RF1fZQoaAZoCWgPQwj5ugz/ab1wQJSGlFKUaBVLzmgWR0ChXsw0GeMAdX2UKGgGaAloD0MIT1sjgvEWckCUhpRSlGgVS+toFkdAoV9om3OObXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82dca1df38db512151e1ce83084ff226ffec585f140cc48d900c85ff75148719
3
+ size 84893
PPO_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8e354a960b65403941ecd5c5787e08a8c2dbedc3e51f0fefbd815863cd66aef
3
+ size 43201
PPO_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 285.13 +/- 18.43
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4afbe530e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4afbe53170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4afbe53200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4afbe53290>", "_build": "<function ActorCriticPolicy._build at 0x7f4afbe53320>", "forward": "<function ActorCriticPolicy.forward at 0x7f4afbe533b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4afbe53440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4afbe534d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4afbe53560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4afbe535f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4afbe53680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4afbea7210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651825089.1506379, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNSkb1khYc/GpqJvWUgBr+zMSm+Mk0NPQAAAAAAAAAAbXh0PmHkjj8kXwI+JmALv6L8wj4uOju+AAAAAAAAAAAzizw7RTqyP4nLDj7eHNm+1iuxumPQ6DsAAAAAAAAAAGZHTz0DBAG8+wAOvor3D77KcgM9Sbs5PwAAgD8AAIA/AF6KvK8gWz+LYzw9ocrwvvtmdLzhzqg9AAAAAAAAAACaULS8O/qOvCUCizwQaoO9wo6OvXqFqL4AAIA/AACAP5qn8Lx7qpW6WAejM4loLq/QTsc6SuzDswAAgD8AAIA/M0yDPT0GUDrCOlq2QvAUsmN/QjyqEY41AACAPwAAgD9my8u8Uhz9u0qWYzxW5448Do5TvVZxbz0AAIA/AACAP01stT1fI/U+MmhavsB5u74T/RO+9yGhvQAAAAAAAAAAAGi2PSkMR7oq5Fe4MWVJs8HwbzsAcn83AACAPwAAAABmhYg87P6EuxLxhDzySwU9zWPQPDiZ3r0AAIA/AACAPzOw+bxcX0O6xHOttnxQsbEcpYM7rsjKNQAAgD8AAIA/zaoFPXY9Z7zkr5G9E1Jqvbh3uj16dLg+AACAPwAAgD/Neqo8F/QTPM5cmb38b6O+FWfLvejT+zsAAIA/AAAAAGY/hrx2HQC8kixyuz4qxDyByV89SwmivQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWTSdnQxlcUCUhpRSlIwBbJRLz4wBdJRHQKE8eTibUgB1fZQoaAZoCWgPQwgdAdwsnixyQJSGlFKUaBVL3WgWR0ChPLsvh60IdX2UKGgGaAloD0MIud+hKFBlb0CUhpRSlGgVS99oFkdAoTzEeyRjjXV9lChoBmgJaA9DCNsV+mDZz3NAlIaUUpRoFUvcaBZHQKE9JSBK+SN1fZQoaAZoCWgPQwiRJt4BXo9xQJSGlFKUaBVL0mgWR0ChPTtq59VndX2UKGgGaAloD0MI+daH9UbJbUCUhpRSlGgVS+BoFkdAoT1Fkxyn1nV9lChoBmgJaA9DCAdBR6ta3nFAlIaUUpRoFUvcaBZHQKE9Xnr6ciJ1fZQoaAZoCWgPQwgrL/mfPAlzQJSGlFKUaBVLwWgWR0ChPW9OqNp/dX2UKGgGaAloD0MIk1SmmMPWcUCUhpRSlGgVS9hoFkdAoT2BRXOnmHV9lChoBmgJaA9DCIHQevjyhnBAlIaUUpRoFUvfaBZHQKE9h3j+7191fZQoaAZoCWgPQwhuaMpOP5RzQJSGlFKUaBVL4GgWR0ChPcSsKb8WdX2UKGgGaAloD0MIjfFh9rJkckCUhpRSlGgVS/VoFkdAoT33E87p3XV9lChoBmgJaA9DCMKGp1fKBG5AlIaUUpRoFUvZaBZHQKE+BcY64lR1fZQoaAZoCWgPQwiQv7Soz3FzQJSGlFKUaBVL42gWR0ChPrFwtJ4CdX2UKGgGaAloD0MIkPeqlUlrckCUhpRSlGgVS/VoFkdAoT7RwIdELHV9lChoBmgJaA9DCFbysbsAeHBAlIaUUpRoFUvCaBZHQKE/DCAMDwJ1fZQoaAZoCWgPQwjOwTOhSZduQJSGlFKUaBVL1mgWR0ChP9MwUQCkdX2UKGgGaAloD0MI5BJHHgj+cECUhpRSlGgVS8doFkdAoUAm2kSElHV9lChoBmgJaA9DCIDXZ866CXJAlIaUUpRoFUv7aBZHQKFAMskIHC51fZQoaAZoCWgPQwjoEaPn1sxyQJSGlFKUaBVL2mgWR0ChQFlUZNwjdX2UKGgGaAloD0MIDfs9sc6cckCUhpRSlGgVS9FoFkdAoUByhi9ZinV9lChoBmgJaA9DCLh0zHlGtHFAlIaUUpRoFUvWaBZHQKFAmsDnvDx1fZQoaAZoCWgPQwgMWkjA6FFxQJSGlFKUaBVL/mgWR0ChQQM5GSZCdX2UKGgGaAloD0MISzygbMpYcUCUhpRSlGgVS+1oFkdAoUEM1CPZI3V9lChoBmgJaA9DCDwW26Ri7HBAlIaUUpRoFU0fAWgWR0ChQRBjvuw5dX2UKGgGaAloD0MIX3mQniINdECUhpRSlGgVS8toFkdAoUEVbor4FnV9lChoBmgJaA9DCNlD+1jBbXBAlIaUUpRoFUvxaBZHQKFBI2vStvJ1fZQoaAZoCWgPQwi14bA0cD9vQJSGlFKUaBVNAwFoFkdAoUGnnIQvpXV9lChoBmgJaA9DCKFLOPTWkHJAlIaUUpRoFU0BAWgWR0ChUBHL7oB8dX2UKGgGaAloD0MIzApFuh8qcUCUhpRSlGgVS9VoFkdAoVBDaVUuMHV9lChoBmgJaA9DCJ9XPPVIpXFAlIaUUpRoFUviaBZHQKFQU4ZuQ6p1fZQoaAZoCWgPQwhdpibBm0NyQJSGlFKUaBVL62gWR0ChUMqkM1CPdX2UKGgGaAloD0MI1/uNdpyTcECUhpRSlGgVS9xoFkdAoVGr0e2d/nV9lChoBmgJaA9DCG3IPzMIQHFAlIaUUpRoFUv0aBZHQKFRwbkwN9Z1fZQoaAZoCWgPQwhTPgRVI75wQJSGlFKUaBVLzmgWR0ChUeYxL0z1dX2UKGgGaAloD0MIWoKMgEqEcECUhpRSlGgVS95oFkdAoVH/HBDXv3V9lChoBmgJaA9DCNifxOeOEnJAlIaUUpRoFUv+aBZHQKFSRzI3irF1fZQoaAZoCWgPQwhv2LYo8yZxQJSGlFKUaBVNAwFoFkdAoVKBc/t6X3V9lChoBmgJaA9DCN0jm6smNHJAlIaUUpRoFUvXaBZHQKFSglw97nh1fZQoaAZoCWgPQwgFGJY/n9FxQJSGlFKUaBVL1GgWR0ChUo03fhuPdX2UKGgGaAloD0MIzO80mfGEckCUhpRSlGgVS+toFkdAoVLHmig00nV9lChoBmgJaA9DCJ+wxAPKoW9AlIaUUpRoFUvraBZHQKFS2MKkVN51fZQoaAZoCWgPQwi4V+atOuJwQJSGlFKUaBVL0GgWR0ChUwk078vVdX2UKGgGaAloD0MIwLFnz2VjcECUhpRSlGgVS/9oFkdAoVMV8Ti84HV9lChoBmgJaA9DCKGfqdftoXJAlIaUUpRoFUvJaBZHQKFTWQgcLjR1fZQoaAZoCWgPQwhr8L4ql8ZwQJSGlFKUaBVL22gWR0ChU2pQtSQ6dX2UKGgGaAloD0MIbK8Fvfc3cUCUhpRSlGgVS/FoFkdAoVP8fgaWHHV9lChoBmgJaA9DCI4glWKHEHFAlIaUUpRoFUviaBZHQKFURaBZpzt1fZQoaAZoCWgPQwgzcEBLF0lxQJSGlFKUaBVL0WgWR0ChVOE0zj3mdX2UKGgGaAloD0MIwOrIkQ4tdECUhpRSlGgVS8loFkdAoVUN7OVxCXV9lChoBmgJaA9DCPjGEACcg3FAlIaUUpRoFUvTaBZHQKFVHehwl0J1fZQoaAZoCWgPQwgZj1IJT7JzQJSGlFKUaBVLxGgWR0ChVXpGnXNDdX2UKGgGaAloD0MIqOLGLSYbckCUhpRSlGgVS8toFkdAoVWf60pmVnV9lChoBmgJaA9DCMLZrWUyInBAlIaUUpRoFUvXaBZHQKFVyC17Y051fZQoaAZoCWgPQwhAwFq169twQJSGlFKUaBVL5GgWR0ChVcSad+XrdX2UKGgGaAloD0MI6j4Aqc2abkCUhpRSlGgVS8VoFkdAoVXVpVS4v3V9lChoBmgJaA9DCIPb2sKzLXFAlIaUUpRoFU0YAWgWR0ChVg+J53TvdX2UKGgGaAloD0MIpg7yevBzcUCUhpRSlGgVS+RoFkdAoVY3r0J4S3V9lChoBmgJaA9DCPz89+C1oHNAlIaUUpRoFUvUaBZHQKFWQd4FA3V1fZQoaAZoCWgPQwivYBvx5O9vQJSGlFKUaBVLwGgWR0ChVl052hZhdX2UKGgGaAloD0MIx7sjYzXFbkCUhpRSlGgVS91oFkdAoVZtYbKif3V9lChoBmgJaA9DCBK9jGK5k3BAlIaUUpRoFUvLaBZHQKFWc9V3ljp1fZQoaAZoCWgPQwh6NxYUBgBxQJSGlFKUaBVLx2gWR0ChVwG/WUbDdX2UKGgGaAloD0MIMILGTGK2cECUhpRSlGgVS/NoFkdAoVfw6EJ0GXV9lChoBmgJaA9DCIM0Y9F0mHFAlIaUUpRoFUvMaBZHQKFYGUahpQF1fZQoaAZoCWgPQwjwTj499mZwQJSGlFKUaBVL1GgWR0ChWEunVG1AdX2UKGgGaAloD0MI7X+AteqmbUCUhpRSlGgVS/VoFkdAoViXyPMjeXV9lChoBmgJaA9DCDsYsU9AOnNAlIaUUpRoFUvIaBZHQKFY0zMRpUR1fZQoaAZoCWgPQwgfEVMiiS9yQJSGlFKUaBVL0WgWR0ChWO3G4qgAdX2UKGgGaAloD0MI86ykFV+JcUCUhpRSlGgVS+VoFkdAoVkWLJjlP3V9lChoBmgJaA9DCLXGoBOCWHJAlIaUUpRoFUvvaBZHQKFZGal1r7B1fZQoaAZoCWgPQwgSM/s8xpFyQJSGlFKUaBVL0WgWR0ChWTgTZg5SdX2UKGgGaAloD0MIuYswRTl/cUCUhpRSlGgVS8JoFkdAoVlS9TP0I3V9lChoBmgJaA9DCEBOmDDawHJAlIaUUpRoFUvSaBZHQKFZZZkCmuV1fZQoaAZoCWgPQwgc8PlhBKhzQJSGlFKUaBVLyGgWR0ChWX5bILgGdX2UKGgGaAloD0MIbRtGQfBFcUCUhpRSlGgVS/5oFkdAoVmSbtqpLnV9lChoBmgJaA9DCPn4hOz8cnJAlIaUUpRoFUvfaBZHQKFZnEuxrzp1fZQoaAZoCWgPQwjRkVz+Q7NwQJSGlFKUaBVL2GgWR0ChWa+dkJ8fdX2UKGgGaAloD0MIvsCsUGSLckCUhpRSlGgVS8RoFkdAoVn1+CsfaHV9lChoBmgJaA9DCHJqZ5iaunNAlIaUUpRoFUvaaBZHQKFbOM8YAKh1fZQoaAZoCWgPQwhffNEer7ZzQJSGlFKUaBVL0mgWR0ChW0DvmYBvdX2UKGgGaAloD0MIzA2GOqzsbUCUhpRSlGgVS9toFkdAoVuao0hvBXV9lChoBmgJaA9DCN3pzhPPBHRAlIaUUpRoFUu+aBZHQKFbw+Pikwh1fZQoaAZoCWgPQwj8qlyovPRwQJSGlFKUaBVL22gWR0ChW+iBXjlxdX2UKGgGaAloD0MIjbPpCGC3c0CUhpRSlGgVS9doFkdAoVwTHIZIhHV9lChoBmgJaA9DCA+1bRiFRXFAlIaUUpRoFUvLaBZHQKFcSY1pCa91fZQoaAZoCWgPQwjjOPBqeRNxQJSGlFKUaBVL42gWR0ChXI9jgAIZdX2UKGgGaAloD0MI/ACkNjFTcUCUhpRSlGgVS+loFkdAoVykyN4qw3V9lChoBmgJaA9DCEBqEyc3VHJAlIaUUpRoFUvIaBZHQKFcyVfu1F91fZQoaAZoCWgPQwgCZr6DX5FyQJSGlFKUaBVL42gWR0ChXN+bd8ArdX2UKGgGaAloD0MIvVZCd8nybkCUhpRSlGgVS91oFkdAoVzkAggX/HV9lChoBmgJaA9DCMsRMpDnuXBAlIaUUpRoFUvraBZHQKFc6sGPgel1fZQoaAZoCWgPQwiXV663TadxQJSGlFKUaBVL3mgWR0ChXP8z67/XdX2UKGgGaAloD0MIfh6jPPMlckCUhpRSlGgVS9FoFkdAoV06RB/qgXV9lChoBmgJaA9DCJhtp61RIHFAlIaUUpRoFUvvaBZHQKFdQWyC4Bp1fZQoaAZoCWgPQwj3j4XoEJFUQJSGlFKUaBVLh2gWR0ChXaHJDE3sdX2UKGgGaAloD0MIvr7WpQawckCUhpRSlGgVS9hoFkdAoV54uf29MHV9lChoBmgJaA9DCBGLGHYYH3BAlIaUUpRoFUvWaBZHQKFeeFoL5RF1fZQoaAZoCWgPQwj5ugz/ab1wQJSGlFKUaBVLzmgWR0ChXsw0GeMAdX2UKGgGaAloD0MIT1sjgvEWckCUhpRSlGgVS+toFkdAoV9om3OObXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeb52c2e4d70f8097d000644125c222e9d7902eedc2769c27d9f2bd3127768ce
3
+ size 245439
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.1323425505985, "std_reward": 18.427598045646963, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T08:56:20.426339"}