File size: 4,222 Bytes
2b18686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language: en
license: mit
tags:
  - natural-language-inference
  - sentence-transformers
  - transformers
  - nlp
  - model-card
---

# NoInstruct-small-Embedding-v0-nli

- **Base Model:** [avsolatorio/NoInstruct-small-Embedding-v0](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0)
- **Task:** Natural Language Inference (NLI)
- **Framework:** Hugging Face Transformers, Sentence Transformers

NoInstruct-small-Embedding-v0-nli is a fine-tuned NLI model that classifies the relationship between pairs of sentences into three categories: entailment, neutral, and contradiction. It enhances the capabilities of [avsolatorio/NoInstruct-small-Embedding-v0](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0) for improved performance on NLI tasks.

## Intended Use
NoInstruct-small-Embedding-v0-nli is ideal for applications requiring understanding of logical relationships between sentences, including:

- Semantic textual similarity
- Question answering
- Dialogue systems
- Content moderation

## Performance
NoInstruct-small-Embedding-v0-nli was trained on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset, achieving competitive results in sentence pair classification.

Performance on the MNLI matched validation set:
- Accuracy: 0.7687
- Precision: 0.77
- Recall: 0.77
- F1-score: 0.77

## Training details

<details>
<summary><strong>Training Details</strong></summary>

- **Dataset:** 
  - Used [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli).
  
- **Sampling:**
  - 100 000 training samples and 10 000 evaluation samples.

- **Fine-tuning Process:**
  - Custom Python script with adaptive precision training (bfloat16).
  - Early stopping based on evaluation loss.

- **Hyperparameters:**
  - **Learning Rate:** 2e-5
  - **Batch Size:** 64
  - **Optimizer:** AdamW (weight decay: 0.01)
  - **Training Duration:** Up to 10 epochs

</details>

<details>
<summary><strong>Reproducibility</strong></summary>

To ensure reproducibility:
- Fixed random seed: 42
- Environment:
  - Python: 3.10.12
  - PyTorch: 2.5.1
  - Transformers: 4.44.2

</details>

## Usage Instructions

## Using Sentence Transformers
```python
from sentence_transformers import CrossEncoder

model_name = "agentlans/NoInstruct-small-Embedding-v0-nli"
model = CrossEncoder(model_name)
scores = model.predict(
    [
        ("A man is eating pizza", "A man eats something"),
        (
            "A black race car starts up in front of a crowd of people.",
            "A man is driving down a lonely road.",
        ),
    ]
)

label_mapping = ["entailment", "neutral", "contradiction"]
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
print(labels)
```

## Using Transformers Library
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_name = "agentlans/NoInstruct-small-Embedding-v0-nli"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

features = tokenizer(
    [
        "A man is eating pizza",
        "A black race car starts up in front of a crowd of people.",
    ],
    ["A man eats something", "A man is driving down a lonely road."],
    padding=True,
    truncation=True,
    return_tensors="pt",
)

model.eval()
with torch.no_grad():
    scores = model(**features).logits
    label_mapping = ["entailment", "neutral", "contradiction"]
    labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
    print(labels)
```

## Limitations and Ethical Considerations
NoInstruct-small-Embedding-v0-nli may reflect biases present in the training data. Users should evaluate its performance in specific contexts to ensure fairness and accuracy.

## Conclusion
NoInstruct-small-Embedding-v0-nli offers a robust solution for NLI tasks, enhancing [avsolatorio/NoInstruct-small-Embedding-v0](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0)'s capabilities with straightforward integration into existing frameworks. It aids developers in building intelligent applications that require nuanced language understanding.