File size: 1,464 Bytes
989c537
0fbbdb8
989c537
0fbbdb8
989c537
0fbbdb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989c537
27e4764
0fbbdb8
 
989c537
 
0fbbdb8
 
 
 
 
 
 
 
 
989c537
0fbbdb8
 
 
 
 
 
 
 
 
989c537
27e4764
0fbbdb8
 
989c537
0fbbdb8
 
 
 
 
 
 
 
 
 
989c537
0fbbdb8
 
 
 
 
 
 
 
 
 
 
 
989c537
0fbbdb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989c537
0fbbdb8
 
989c537
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
{
  "_name_or_path": "google/efficientnet-b0",
  "architectures": [
    "EfficientNetForImageClassification"
  ],
  "batch_norm_eps": 0.001,
  "batch_norm_momentum": 0.99,
  "depth_coefficient": 1.0,
  "depth_divisor": 8,
  "depthwise_padding": [],
  "drop_connect_rate": 0.2,
  "dropout_rate": 0.2,
  "expand_ratios": [
    1,
    6,
    6,
    6,
    6,
    6,
    6
  ],
  "hidden_act": "swish",
  "hidden_dim": 1280,
  "id2label": {
    "0": "benign",
    "1": "normal thyroid",
    "2": "malignant"
  },
  "image_size": 224,
  "in_channels": [
    32,
    16,
    24,
    40,
    80,
    112,
    192
  ],
  "initializer_range": 0.02,
  "kernel_sizes": [
    3,
    3,
    5,
    3,
    5,
    5,
    3
  ],
  "label2id": {
    "benign": 0,
    "malignant": 2,
    "normal thyroid": 1
  },
  "model_type": "efficientnet",
  "num_block_repeats": [
    1,
    2,
    2,
    3,
    3,
    4,
    1
  ],
  "num_channels": 3,
  "num_hidden_layers": 64,
  "out_channels": [
    16,
    24,
    40,
    80,
    112,
    192,
    320
  ],
  "out_features": null,
  "pooling_type": "mean",
  "problem_type": "single_label_classification",
  "squeeze_expansion_ratio": 0.25,
  "stage_names": [
    "stem",
    "stage1",
    "stage2",
    "stage3",
    "stage4",
    "stage5",
    "stage6",
    "stage7"
  ],
  "strides": [
    1,
    2,
    2,
    2,
    1,
    2,
    1
  ],
  "torch_dtype": "float32",
  "transformers_version": "4.41.0",
  "width_coefficient": 1.0
}